Skip to main navigation menu Skip to main content Skip to site footer

Perspective

Vol. 4 No. 1 (2025): Les neurosciences de l'éducation au service du grand public

Comprendre les enjeux liés aux apprentissages des mathématiques chez les adolescent·e·s âgé·e·s de 15 à 19 ans en formation post-obligatoire

  • Delphine Jaggi
DOI
https://doi.org/10.26034/cortica.2025.7050
Submitted
March 12, 2025
Published
2025-03-21

Abstract

This study explores the challenges faced by adolescents aged 15 to 19 in learning mathematics in post-compulsory education. It draws on educational neuroscience and the PRESENCE model to examine how self-perception, emotions, and learning strategies influence academic success. The study employs a mixed-methods approach, combining classroom observations, questionnaires, and hands-on workshops designed to enhance student motivation and self-determination. Findings indicate that implementing a metacognitive approach and raising awareness about brain functioning improve student engagement and their ability to overcome difficulties. The study highlights the importance of tailored pedagogy, integrating neuroscientific principles, to foster academic perseverance and strengthen students' confidence in their mathematical abilities.

References

  1. Baird, B., Smallwood, J., Mrazek, M. D., Kam, J. W., Franklin, M. S., & Schooler, J. W. (2012). Inspired by distraction: Mind wan-dering facilitates creative incubation. Psy-chological Science, 23(10), 1117-1122.
  2. Bastin, C. (2018). Le réseau cérébral par défaut : un repos qui n’en est pas un. Revue de neuropsychologie, 10, 232-238. https://doi.org/10.1684/nrp.2018.0469
  3. Baum, G. L., Ciric, R., Roalf, D. R., Betzel, R. F., Moore, T. M., Shinohara, R. T., Kahn, A. E., Vandekar, S. N., Rupert, P. E., Quarmley, M., Cook, P. A., Elliott, M. A., Ruparel, K., Gur, R. E., Gur, R. C., Bas-sett, D. S., & Satterthwaite, T. D. (2017). Modular Segregation of Structural Brain Networks Supports the Development of Executive Function in Youth. Current biolo-gy: CB, 27(11), 1561–1572.e8. https://doi.org/10.1016/j.cub.2017.04.051
  4. Becquet, C., Eustache, F. & Quinette, P. (2020). Étudier la conscience en neurop-sychologie : utiliser la polysémie du con-cept pour définir les processus cons-cients. Revue de neuropsychologie, 12, 308-317.
  5. Belleau, J. (2015). Neuropédagogie : cerveau, intelligences et apprentissage. https://core.ac.uk/download/pdf/52976113.pdf
  6. Cenas Médecine du sommeil. (2022) De combien d’heures de sommeil ai-je vrai-ment besoin ? https://www.cenas.ch/hygiene-du-sommeil/de-combien-dheures-de-sommeil-ai-vraiment-besoin/
  7. Chi, M. T. H. (2009). Active-Constructive-Interactive: A conceptual framework for differentiating learning activities. Cognitive Science, 1, 73-105. doi.org/10.1111/j.1756-8765.2008.01005.x
  8. Conway, MA. & Pleydell-Pierce, CW. (2001). The Construction of Autobiographical Memories in the Self-Memory System. Psychology Review, 107, 261-88. https://doi.org/10.1037/0033-295x.107.2.261
  9. Crettenand, G.V. (2023). Promouvoir la santé psychique des jeunes de 16 à 25 ans. SantéPsy.ch. https://santepsy.ch/wp-con-tent/uploads/2023/11/santepsy_cahier_16-25ans..pdf
  10. Damasio A. R. (1989). Time-locked multire-gional retroactivation: a systems-level pro-posal for the neural substrates of recall and recognition. Cognition, 33(1-2), 25–62. https://doi.org/10.1016/0010-0277(89)90005-x
  11. Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: toward understanding adapta-tion to early-life adversity out-come. Psychoneuroendocrinology, 38(9), 1858–1873. https://doi.org/10.1016/j.psyneuen.2013.06.008
  12. Dayan, J. & Guillery-Girard, B. (2011). Conduites adolescentes et développement cérébral : psychanalyse et neurosciences. Adolescence, 77(3), 479-515. https://doi.org/10.3917/ado.077.0479
  13. Dehaene, S. & Naccache, L. (2001). Towards a cognitive neuroscience of conscious-ness: Basic evidence and a workspace framework. Cognition, 79(1-2), 1–37. https://doi.org/10.1016/S0010-0277(00)00123-2
  14. Dehaene, S., Charles, L. (2014). Toward a computational theory of conscious pro-cessing. Current Opinion in Neurobiology, 25, 76-84. https://doi.org/10.1016/j.conb.2013.12.005
  15. Dehaene, S., Kerszberg MK., Changeux, C. (1998). A neuronal model of a global work-space in effortful cognitive tasks. Proc Natl Acad Sci USA, 95, 14529-34. https://doi:10.1073/pnas.95.24.14529
  16. Dietrich, A. (2003). Functional neuroanatomy of altered states of consciousness: The transient hypofrontality hypothesis. Conscious Cogn, 12, 231-56. https://doi:10.1016/s1053-8100(02)00046-6
  17. Ebbinghaus, H. (1885). Über das gedächtnis: untersuchungen zur experimentellen psy-chologie. Duncker & Humblot.
  18. Fahim, C. (2022). PRESENCE d’une Prédis-position : Premier épisode d’une série de huit épisodes sur le cerveau. Cortica, 1(2), 464-492. doi.org/10.26034/cortica.2022.3344
  19. Fahim, C. (2022). PRESENCE enracinée dans le cerveau par une prédisposition géné-tique et tissée par l’épigénétique. Cortica, 1(1), 1-3. doi.org/10.26034/cortica.2022.1779
  20. Fahim, C. (2023). PRESENCE DE RÉSEAUX DE NEURONES : OÙ EST LE PLAN POUR NE PAS SE PERDRE DANS L’IMMENSITÉ DE CETTE FORÊT ? Deu-xième épisode d’une série de huit épisodes sur le cerveau. Cortica, 2(1), 1-9. doi.org/10.26034/cortica.2023.37936
  21. Fahim, C. (2024). L’Élagage synaptique. Cortica, 3(2),1-20. https://doi.org/10.26034/cortica.2024.6091
  22. Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cogni-tive–developmental inquiry. American Psy-chologist, 34, 906–911. https://doi.org/10.1037/0003-066X.34.10.906
  23. Futura-science. (2024, 31 mars). Cortex préfrontal : qu’est-ce que c’est ? https://www.futura-sciences.com/sante/definitions/corps-humain-cortex-prefrontal-15736/
  24. Gaillard, N. (2024). CAS en neuroscience de l’éducation fondements et pratiques. Corti-ca, 3(1), 355-388. https://doi.org/10.26034/cortica.2024.4
  25. Genoud P., Guillod M. (2014). Développement et validation d’un questionnaire évaluant les attitudes socio-affectives en maths. Re-cherches en éducation, 20(20), 140-156
  26. Gerbier, E., Koenig, O. (2015). Comment les intervalles temporels entre les répétitions d’une information en influencent-ils la mé-morisation ? Revue théorique des effets de pratique distribuée. L?Année psycholo-gique 115(03):1-28
  27. Giordan, A. (1998). Apprendre ! Belin.
  28. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., 3rd, Herman, D. H., Clasen, L. S., Toga, A. W., Rapoport, J. L., & Thompson, P. M. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174–8179. https://doi.org/10.1073/pnas.0402680101
  29. Gomes, G. (2007). Free will, the self, and the brain. Behav Sci Law, 25(2), 221-34. https://doi.org/10.1002/bsl.754
  30. Houdé, J. (2000). Inhibition and cognitive development: Object, number, categoriza-tion, and reasoning. Cognitive Develop-ment, 15(1), 63-73. https://doi.org/10.1016/S0885-2014(00)00015-0
  31. Houdé, O. (2011). L’intelligence se construit par l’inhibition. La recherche, 457, 48-51.
  32. Houdé, O. (2019). 3-system theory of the cognitive brain: A post-piagetian approach. Routledge.
  33. https://doi.org/10.3917/anpsy.153.0435
  34. Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28(2), 229–289.
  35. Labonté, B. & Turecki, G. (2012). Épigénétique : un lien entre l’environnement et le gé-nome. Santé mentale au Québec, 37(2), 31–44. https://doi.org/10.7202/1014943ar
  36. Lavoie, R. (2001). Résumé et adapté de Saint-Pierre, L. (1993), « Quoi faire pour que les élèves étudient mieux et davantage » et L’étude et les stratégies d’apprentissage (1991), dans Pédagogie collégiale.
  37. Leisman G, et al. (2012). Intentionality and "free-will" from a neurodevelopmental per-spective. Frontier in Integrative Neuroscience, 6, 36. https://doi.org/ 10.3389/fnint.2012.00036
  38. Liu, S., Li, A., Zhu, M., Li, J.& Liu, B. (2018). Genetic influences on cortical myelination in the human brain. Genes, Brain & Behav-ior, 18(4), e12537. https://doi.org/10.1111/gbb.12537
  39. Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., & Miya-waki, T. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral cor-tex (New York, N.Y.: 1991), 11(4), 335–342. https://doi.org/10.1093/cercor/11.4.335
  40. McEwen, B., et al. (2016). Stress Effects on Neuronal Structure: Hippocampus, Amyg-dala, and Prefrontal Cortex. Neuropsycho-pharmacology, 41, 3–23. doi:10.1038/npp.2015.171
  41. Merzenich, M. M., Kaas, J. H., Wall, J., Nelson, R. J., Sur, M., & Felleman, D. (1983). Topographic reorganization of so-matosensory cortical areas 3b and 1 in adult monkeys following restricted deaffer-entation. Neuroscience, 8(1), 33–55. https://doi.org/10.1016/0306-4522(83)90024-6
  42. Namkung, H., Kim, SH. & Sawa, A. (2017). The Insula: An Underestimated Brain Area in Clinical Neuroscience, Psychiatry, and Neurology. Trends in Neurosciences, 40(4), 200-207. https://doi.org/ 10.1016/j.tins.2017.02.002
  43. Neniskyte U. & Gross, CT. (2017). Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disor-ders. Nature Review Neuroscience. 18(11), 658-670. https://doi.org/10.1038/nrn.2017.110
  44. Neuromedia. (2021, 21 février). Cervelet, anatomie, fonctions et troubles associés. https://www.neuromedia.ca/cervelet-anatomie-fonctions-et-troubles/
  45. Oakley, B. & Schewe, O. (2021). Apprendre vite et bien. FIRST.
  46. OpenAI. (2023). ChatGPT (Mar 14 version) [Large language mo-del]. https://chat.openai.com/chat
  47. Paillard, J. (1999). Dialogues sensori-moteurs et représentation mentale : un problème d’interface. Psychologie et cerveau, 19-52. https://doi.org/10.3917/puf.seron.1990.01.0019
  48. Paillard, J.(1990) . Dialogues sensori-moteurs et représentation mentale : un problème d’interface. Dans Seron, X.(dir.), Psychologie et cerveau. (p. 19 -52 ). Presses Universitaires de France. https://doi.org/10.3917/puf.seron.1990.01.0019.
  49. Park, H.J. & Friston; K. (2013). Structural and Functional Brain Networks: From Connec-tions to Cognition.Science, 342,1238411. https://doi.org/10.1126/science.1238411
  50. Park, N., Peterson, C. & Seligman, MEP. (2004). Strengths of character and well-being. Journal of Social and Clinical Psy-chology, 23(5), 603–619. doi.org/10.1521/jscp.23.5.603.50748
  51. Poldrack, RA. (2010). Interpreting develop-mental changes in neuroimaging signals. Hum Brain Mapp, 31(6), 872-8. https://doi.org/10.1002/hbm.21039
  52. Rothbart, M. K., & Bates, J. E. (1998). Tem-perament. Dans W. Damon & N. Eisenberg (Ed.), Handbook of child psychology: So-cial, emotional, and personality develop-ment (5th ed., pp. 105–176). John Wiley & Sons, Inc..
  53. Sakai, J. (2020). Core Concept: How synaptic pruning shapes neural wiring during devel-opment and, possibly, in disease. PNAS USA, 117(28),16096-16099. https://doi.org/10.1073/pnas.2010281117
  54. Sánchez Andres, J., Viosca, J. & Ramón Alonso, J., (2024). Notre cerveau, la mé-moire et les émotions. Glénat.
  55. Sander, E., Gros, H., Gvozdic, K. & Scheibling-Seve, C. (2018). Les neurosciences en éducation. Retz.
  56. Schultz, W. (2007). Behavioral dopamine signals. Trends in Neurosciences, 30(5), 203-210. https://doi.org/10.1016/j.tins.2007.03.007
  57. Schunk, D. H., & Greene, J. A. (2018). Historical, contemporary, and future per-spectives on self-regulated learning and performance. Dans D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (pp. 1–15). Routledge.
  58. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(9), 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
  59. Smith, A.R., Rosenbaum, G.M., Botdorf, M.A., et al. (2018). Peers influence adoles-cent reward processing, but not response inhibition. Cogn Affect Behav Neurosci, 18, 284–295. https://doi.org/10.3758/s13415-018-0569-5
  60. Sowell, ER., Peterson, BS., Thompson, PM., Welcome, SE., Henkenius, AL., Toga, AW. (2003). Mapping cortical change across the human life span. Nat Neurosci, 6(3), 309-15. https://doi.org/ 10.1038/nn1008
  61. Tu, et al., (2018). The Adhesion-GPCR BAI1 Promotes Excitatory Synaptogenesis by Coordinating Bidirectional Trans-synaptic Signaling. The Journal of Neuroscience, 38(39), 8388-8406. https://pmc.ncbi.nlm.nih.gov/articles/PMC6158688/pdf/zns8388.pdf
  62. Tulving, E. (1985). Memory and conscious-ness. Canadian Psychology, 26(1), 1–12. doi.org/10.1037/h0080017
  63. Tulving, E. (1995). Organization of memory: Quo vadis? In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 839–853. The MIT Press.
  64. Van den Heuvel, MP. & Sporns, O. (2011). Rich-club organization of the human con-nectome. J Neurosci, 31(44):15775-86. https://doi.org/10.1523/JNEUROSCI.3539-11.2011
  65. Vanacker, C., Bouret, S., Giacobini, P. & Prévot, V. (2021). Signalisation impliquant la neuropiline dans les neurones sécrétant la GnRH. Son rôle dans le déclenchement de la puberté. Med Sci, 366-371. https://doi.org/10.1051/medsci/2021035
  66. Veenman, M. V. J., & Spaans, M. A. (2005). Relation between intellectual and metacog-nitive skills: Age and task differences. Learning and Individual Differences, 15(2), 159-176. https://doi.org/10.1016/j.lindif.2004.12.001
  67. Vessel, E. A., Isik, A. I., Belfi, A. M., Stahl, J. L., & Starr, G. G. (2019). The default-mode network represents aesthetic appeal that generalizes across visual do-mains. Proceedings of the National Acad-emy of Sciences of the United States of America, 116(38), 19155–19164. https://doi.org/10.1073/pnas.1902650116
  68. Vogel, AC., Power, JD., Petersen, SE., & Schlaggar, BL. (2010). Development of the brain's functional network architec-ture. Neuropsychology Review, 20(4), 362-375. https://doi.org/10.1007/s11065-010-9145-7
  69. Wardle, Margaret C. et al., (2011). Amping up effort: Effects of d-amphetamine on human effort-based decision-making. Journal of Neuroscience, 31(46),16597-602
  70. Zepeda, C. D., Nokes-Malach, T. J. (2020). Supporting student learning through meta-cognitive and motivational strategies. Teaching + Learning Lab. MIT. https://tll.mit.edu/supporting-student-learning-through-metacognitive-and-motivational-strategies/
  71. Zimmerman, B. J. (2002). Becoming a Self-Regulated Learner: An Overview. Theory Into Practice, 41(2), 64–70. https://doi.org/10.1207/s15430421tip4102_2