Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Articles

Vol. 4 No. 2 (2025): De l'élagage synaptique aux neurosciences de l'éducation

Salience and executive network connectivity analyses in schizophrenia during emotional memory tasks

DOI
https://doi.org/10.26034/cortica.2025.8569
Soumise
septembre 18, 2025
Publié-e
2025-12-15

Résumé

Context: Schizophrenia is a psychotic disorder which affects 1% of the population (Morera-Fumero & Abreu-Gonzalez, 2013; Schultz et al., 2007). There are two kinds of symptoms from DSM-5-TR: Positive symptoms (hallucination, delusion, thought disorder and abnormal or grossly disorganized motor behaviour) and negative symptoms that are a diminution of normal behavioural functions. The DSM-5-TR say that there are 2 negative symptoms preeminent in schizophrenia, aboulia and decrease of emotional expression. However, schizophrenia is also marked by cognitive symptoms in 98% of the population with this disorder (Keefe et al., 2005). Thus, the aim of this study is to investigate emotional memory in schizophrenia and identify the underlying dysconnectivity patterns.

Method: 70 participants (34 women and 36 men) were recruited, 35 suffer from schizophrenia (17 women and 18 men) and 35 are healthy control people (17 women and 18 men). Severity of symptoms was evaluated with the BPRS (Brief Psychiatric Rating Scale) and PANSS (Positive and Negative Symptoms Scale). Then, all participants passed an fMRI during the following task: Participants had to observe 12 blocks of 10 images from the IAPS battery during two sessions, Emotion and memory. There are five kinds of image content according to the salience and the emotional valence: High Arousal with negative content (HA-), Low Arousal with negative content (LA-), Neutral (NTR), Low arousal with positive content (LA+) and High Arousal with positive content (HA+). In the first phase, all participants started with the “emotional session”. The participants had to passively observe images from the IAPS. In the second session, the “memory session”, 50% of images were changed by others and the participants had to press a button if they think that they had already seen the image in front of him in the previous session or not.

Results: During the task, the healthy control group had a significantly better correct response rate than people with schizophrenia. In functional analysis, several circuits showing dysconnectivity in schizophrenia during tasks involving both emotion and memory were identified. During the emotion phase, overconnectivity was primarily observed between salience network and visual areas, whereas underconnectivity mainly affected frontal and limbic regions. A similar pattern emerged in the memory phase, with overconnectivity between sensory and frontal areas, while underconnectivity was more pronounced in the salience network, limbic system, and sensory areas.

Références

  1. Abdel-Ghaffar, S. A., Huth, A. G., Lescroart, M. D., Stansbury, D., Gallant, J. L., & Bishop, S. J. (2024). Occipital-temporal cortical tuning to semantic and affective features of natural images predicts associated behavioral responses. Nature Communications, 15, 5531. https://doi.org/10.1038/s41467-024-49073-8
  2. Abi-Dargham, A., Xu, X., Thompson, J. L., Gil, R., Kegeles, L. S., Urban, N., Narendran, R., Hwang, D.-R., Laruelle, M., & Slifstein, M. (2012). Increased prefrontal cortical D1 receptors in drug naïve patients with schizophrenia : A PET study with [11C]NNC112. Journal of Psychopharmacology, 26(6), 794 805. https://doi.org/10.1177/0269881111409265
  3. Aceituno, D., Vera, N., Prina, A. M., & McCrone, P. (2019). Cost-effectiveness of early intervention in psychosis : Systematic review. The British Journal of Psychiatry: The Journal of Mental Science, 215(1), 388 394. https://doi.org/10.1192/bjp.2018.298
  4. Alderson-Day, B., Weis, S., McCarthy-Jones, S., Moseley, P., Smailes, D., & Fernyhough, C. (2016). The brain’s conversation with itself : Neural substrates of dialogic inner speech. Social Cognitive and Affective Neuroscience, 11(1), 110 120. https://doi.org/10.1093/scan/nsv094
  5. Almerie, M. Q., Okba Al Marhi, M., Jawoosh, M., Alsabbagh, M., Matar, H. E., Maayan, N., & Bergman, H. (2015). Social skills programmes for schizophrenia. The Cochrane Database of Systematic Reviews, 2015(6), CD009006. https://doi.org/10.1002/14651858.CD009006.pub2
  6. Amaral, D. G., & Adolphs, R. (2016). Living without an Amygdala. Guilford Publications.
  7. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). https://doi.org/10.1176/appi.books.9780890420614.dsm-iv
  8. American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders: DSM-5-TR™ (5th ed., text rev ed.). https://doi.org/10.1176/appi.books.9780890425787
  9. Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., Habel, U., Schneider, F., & Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex : Intersubject variability and probability maps. Anatomy and Embryology, 210(5 6), 343 352. https://doi.org/10.1007/s00429-005-0025-5
  10. An, S. K., Kang, J. I., Park, J. Y., Kim, K. R., Lee, S. Y., & Lee, E. (2010). Attribution bias in ultra-high risk for psychosis and first-episode schizophrenia. Schizophrenia Research, 118(1 3), 54 61. https://doi.org/10.1016/j.schres.2010.01.025
  11. Anderson, D. J., & Adolphs, R. (2014). A framework for studying emotions across species. Cell, 157(1), 187 200. https://doi.org/10.1016/j.cell.2014.03.003
  12. Andreasen, N. C., O’Leary, D. S., Flaum, M., Nopoulos, P., Watkins, G. L., Boles Ponto, L. L., & Hichwa, R. D. (1997). Hypofrontality in schizophrenia : Distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet (London, England), 349(9067), 1730 1734. https://doi.org/10.1016/s0140-6736(96)08258-x
  13. Andreasen, N. C., Rezai, K., Alliger, R., Swayze, V. W., Flaum, M., Kirchner, P., Cohen, G., & O’Leary, D. S. (1992). Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia. Assessment with xenon 133 single-photon emission computed tomography and the Tower of London. Archives of General Psychiatry, 49(12), 943 958. https://doi.org/10.1001/archpsyc.1992.01820120031006
  14. Antal, A., Luber, B., Brem, A.-K., Bikson, M., Brunoni, A. R., Cohen Kadosh, R., Dubljević, V., Fecteau, S., Ferreri, F., Flöel, A., Hallett, M., Hamilton, R. H., Herrmann, C. S., Lavidor, M., Loo, C., Lustenberger, C., Machado, S., Miniussi, C., Moliadze, V., … Paulus, W. (2022). Non-invasive brain stimulation and neuroenhancement. Clinical Neurophysiology Practice, 7, 146 165. https://doi.org/10.1016/j.cnp.2022.05.002
  15. Anticevic, A., Van Snellenberg, J. X., Cohen, R. E., Repovs, G., Dowd, E. C., & Barch, D. M. (2012). Amygdala recruitment in schizophrenia in response to aversive emotional material : A meta-analysis of neuroimaging studies. Schizophrenia Bulletin, 38(3), 608 621. https://doi.org/10.1093/schbul/sbq131
  16. Balogh, N., Égerházi, A., & Berecz, R. (2015). Neurocognitive changes in patients with schizophrenia during relapse and early remission. The European Journal of Psychiatry, 29(3), 199 209. https://doi.org/10.4321/S0213-61632015000300004
  17. Bem, S. L. (1974). The measurement of psychological androgyny. Journal of Consulting and Clinical Psychology, 42(2), 155 162.
  18. Berntson, G. G., Norman, G. J., Bechara, A., Tranel, D., Bruss, J., & Cacioppo, J. T. (2011). The insula, the amygdala and evaluative processes. Psychological Science, 22(1), 80 86. https://doi.org/10.1177/0956797610391097
  19. Boake, C. (2000). Édouard Claparède and the Auditory Verbal Learning Test. Journal of Clinical and Experimental Neuropsychology, 22(2), 286 292. https://doi.org/10.1076/1380-3395(200004)22:2;1-1;FT286
  20. Böge, K., Karadza, A., Fuchs, L. M., Ehlen, F., Ta, T. M. T., Thomas, N., Bajbouj, M., & Hahn, E. (2020). Mindfulness-Based Interventions for In-Patients With Schizophrenia Spectrum Disorders—A Qualitative Approach. Frontiers in Psychiatry, 11, 600. https://doi.org/10.3389/fpsyt.2020.00600
  21. Bostwick, J. R., Guthrie, S. K., & Ellingrod, V. L. (2009). Antipsychotic-induced hyperprolactinemia. Pharmacotherapy, 29(1), 64 73. https://doi.org/10.1592/phco.29.1.64
  22. Bourque, J., Mendrek, A., Durand, M., Lakis, N., Lipp, O., Stip, E., Lalonde, P., Grignon, S., & Potvin, S. (2013). Cannabis abuse is associated with better emotional memory in schizophrenia : A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 214(1), 24 32. https://doi.org/10.1016/j.pscychresns.2013.05.012
  23. Braslow, J. T., & Marder, S. R. (2019). History of Psychopharmacology.
  24. Calder, A. J., Keane, J., Manes, F., Antoun, N., & Young, A. W. (2000). Impaired recognition and experience of disgust following brain injury. Nature Neuroscience, 3(11), 1077 1078. https://doi.org/10.1038/80586
  25. Cammisuli, D. M., & Sportiello, M. T. (2016). Cognitive psychopathology in Schizophrenia : Comparing memory performances with Obsessive-compulsive disorder patients and normal subjects on the Wechsler Memory Scale-IV. Psychiatria Danubina, 28(2), 118 126.
  26. Candida, M., Campos, C., Monteiro, B., Rocha, N. B. F., Paes, F., Nardi, A. E., & Machado, S. (2016). Cognitive-behavioral therapy for schizophrenia : An overview on efficacy, recent trends and neurobiological findings. MedicalExpress, 3, M160501. https://doi.org/10.5935/MedicalExpress.2016.05.01
  27. Cao, K.-X., Ma, M.-L., Wang, C.-Z., Iqbal, J., Si, J.-J., Xue, Y.-X., & Yang, J.-L. (2021). TMS-EEG : An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology, 197, 108574. https://doi.org/10.1016/j.neuropharm.2021.108574
  28. Caqueo-Urízar, A., Rus-Calafell, M., Urzúa, A., Escudero, J., & Gutiérrez-Maldonado, J. (2015). The role of family therapy in the management of schizophrenia : Challenges and solutions. Neuropsychiatric Disease and Treatment, 11, 145 151. https://doi.org/10.2147/NDT.S51331
  29. Carbon, M., Kane, J. M., Leucht, S., & Correll, C. U. (2018). Tardive dyskinesia risk with first- and second-generation antipsychotics in comparative randomized controlled trials : A meta-analysis. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 17(3), 330 340. https://doi.org/10.1002/wps.20579
  30. Cardona-Acosta, A. M., & Bolaños-Guzmán, C. A. (2023). Role of the Mesolimbic Dopamine Pathway in the Antidepressant Effects of Ketamine. Neuropharmacology, 225, 109374. https://doi.org/10.1016/j.neuropharm.2022.109374
  31. Carhart-Harris, R. L., Bolstridge, M., Day, C. M. J., Rucker, J., Watts, R., Erritzoe, D. E., Kaelen, M., Giribaldi, B., Bloomfield, M., Pilling, S., Rickard, J. A., Forbes, B., Feilding, A., Taylor, D., Curran, H. V., & Nutt, D. J. (2018). Psilocybin with psychological support for treatment-resistant depression : Six-month follow-up. Psychopharmacology, 235(2), 399 408. https://doi.org/10.1007/s00213-017-4771-x
  32. Carlsson, A., Waters, N., Waters, S., & Carlsson, M. L. (2000). Network interactions in schizophrenia—Therapeutic implications. Brain Research Reviews, 31(2), 342 349. https://doi.org/10.1016/S0165-0173(99)00050-8
  33. Catani, M., Dell’acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 1724 1737. https://doi.org/10.1016/j.neubiorev.2013.07.001
  34. Chadwick, P., Hughes, S., Russell, D., Russell, I., & Dagnan, D. (2009). Mindfulness Groups for Distressing Voices and Paranoia : A Replication and Randomized Feasibility Trial. Behavioural and Cognitive Psychotherapy, 37(4), 403 412. https://doi.org/10.1017/S1352465809990166
  35. Champagne, J., Lakis, N., Bourque, J., Stip, E., Lipp, O., & Mendrek, A. (2012). Progesterone and Cerebral Function during Emotion Processing in Men and Women with Schizophrenia. Schizophrenia Research and Treatment, 2012, 917901. https://doi.org/10.1155/2012/917901
  36. Chaumette, B., Kebir, O., & Krebs, M.-O. (2017). Génétique et épigénétique de la schizophrénie et des psychoses. Biologie Aujourd’hui, 211(1), 69 82. https://doi.org/10.1051/jbio/2017015
  37. Cohen, N. J., & Eichenbaum, H. (1993). Memory, Amnesia, and the Hippocampal System. MIT Press.
  38. Crocq, M.-A. (2012). 1. La schizophrénie – histoire du concept et évolution de la nosographie. In Pathologies schizophréniques (p. 5 17). Lavoisier. https://doi.org/10.3917/lav.daler.2012.01.0005
  39. Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response : Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18(5), 766 780. https://doi.org/10.1162/jocn.2006.18.5.766
  40. Davis, L., Strasburger, A., & Brown, L. (2007). Mindfulness : An Intervention for Anxiety in Schizophrenia. Journal of psychosocial nursing and mental health services, 45, 23 29. https://doi.org/10.3928/02793695-20071101-06
  41. de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D., & Yarkoni, T. (2016). Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(24), 6553 6562. https://doi.org/10.1523/JNEUROSCI.4402-15.2016
  42. Dean, M., Weston, A. R. W., Osborn, D. P., Willis, S., Patterson, S., Killaspy, H., Leurent, B., & Crawford, M. J. (2014). Activity groups for people with schizophrenia : A randomized controlled trial. Journal of Mental Health, 23(4), 171 175. https://doi.org/10.3109/09638237.2014.889285
  43. Delavari, F., Rafi, H., Sandini, C., Murray, R. J., Latrèche, C., Van De Ville, D., & Eliez, S. (2023). Amygdala subdivisions exhibit aberrant whole-brain functional connectivity in relation to stress intolerance and psychotic symptoms in 22q11.2DS. Translational Psychiatry, 13(1), 1 12. https://doi.org/10.1038/s41398-023-02458-7
  44. Dickey, C. C., McCarley, R. W., Voglmaier, M. M., Frumin, M., Niznikiewicz, M. A., Hirayasu, Y., Fraone, S., Seidman, L. J., & Shenton, M. E. (2002). Smaller left Heschl’s gyrus volume in patients with schizotypal personality disorder. The American Journal of Psychiatry, 159(9), 1521 1527. https://doi.org/10.1176/appi.ajp.159.9.1521
  45. Dierks, T., Linden, D. E. J., Jandl, M., Formisano, E., Goebel, R., Lanfermann, H., & Singer, W. (1999). Activation of Heschl’s Gyrus during Auditory Hallucinations. Neuron, 22(3), 615 621. https://doi.org/10.1016/S0896-6273(00)80715-1
  46. Dorland, W. A. N. (1925). Dorland's illustrated medical dictionary. Wb Saunders.
  47. Du, X.-D., Li, Z., Yuan, N., Yin, M., Zhao, X.-L., Lv, X.-L., Zou, S.-Y., Zhang, J., Zhang, G.-Y., Li, C.-W., Pan, H., Yang, L., Wu, S.-Q., Yue, Y., Wu, Y.-X., & Zhang, X.-Y. (2022). Delayed improvements in visual memory task performance among chronic schizophrenia patients after high-frequency repetitive transcranial magnetic stimulation. World Journal of Psychiatry, 12(9), 1169 1182. https://doi.org/10.5498/wjp.v12.i9.1169
  48. Eack, S. M., Wojtalik, J. A., Barb, S. M., Newhill, C. E., Keshavan, M. S., & Phillips, M. L. (2016). Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia. PLoS ONE, 11(3), e0149297. https://doi.org/10.1371/journal.pone.0149297
  49. Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3 4), 169 200. https://doi.org/10.1080/02699939208411068
  50. Eshel, N., Touponse, G. C., Wang, A. R., Osterman, A. K., Shank, A. N., Groome, A. M., Taniguchi, L., Cardozo Pinto, D. F., Tucciarone, J., Bentzley, B. S., & Malenka, R. C. (2024). Striatal dopamine integrates cost, benefit, and motivation. Neuron, 112(3), 500-514.e5. https://doi.org/10.1016/j.neuron.2023.10.038
  51. Esteves, M., Lopes, S. S., Almeida, A., Sousa, N., & Leite-Almeida, H. (2020). Unmasking the relevance of hemispheric asymmetries—Break on through (to the other side). Progress in Neurobiology, 192, 101823. https://doi.org/10.1016/j.pneurobio.2020.101823
  52. Fan, F.-M., Xiang, H., Wen, Y., Zhao, Y.-L., Zhu, X.-L., Wang, Y.-H., Yang, F.-D., Tan, Y.-L., & Tan, S.-P. (2019). Brain Abnormalities in Different Phases of Working Memory in Schizophrenia : An Integrative Multi-Modal MRI Study. The Journal of Nervous and Mental Disease, 207(9), 760 767. https://doi.org/10.1097/NMD.0000000000001001
  53. Feldman Barrett, L. (2011). Constructing Emotion.
  54. Fernandez-Ruiz, J., Peltsch, A., Alahyane, N., Brien, D. C., Coe, B. C., Garcia, A., & Munoz, D. P. (2018). Age related prefrontal compensatory mechanisms for inhibitory control in the antisaccade task. NeuroImage, 165, 92 101. https://doi.org/10.1016/j.neuroimage.2017.10.001
  55. Filley, C. M. (2002). Neuroanatomy. In V. S. Ramachandran (Éd.), Encyclopedia of the Human Brain (p. 403 422). Academic Press. https://doi.org/10.1016/B0-12-227210-2/00237-5
  56. Friston, K. J., & Frith, C. D. (1995). Schizophrenia : A disconnection syndrome? Clinical Neuroscience (New York, N.Y.), 3(2), 89 97.
  57. Fryer, S. L., Ferri, J. M., Roach, B. J., Loewy, R. L., Stuart, B. K., Anticevic, A., Ford, J. M., & Mathalon, D. H. (2022). Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia. Psychological Medicine, 52(13), 2767 2775. https://doi.org/10.1017/S0033291720004882
  58. Fusar-Poli, P., McGuire, P., & Borgwardt, S. (2012). Mapping prodromal psychosis : A critical review of neuroimaging studies. European Psychiatry, 27(3), 181 191. https://doi.org/10.1016/j.eurpsy.2011.06.006
  59. Galbally, M., Wynter, K., Siskind, D., Correll, C. U., Northwood, K., & Every-Palmer, S. (2024). Sex Differences Between Female and Male Individuals in Antipsychotic Efficacy and Adverse Effects in the Treatment of Schizophrenia. CNS Drugs. https://doi.org/10.1007/s40263-024-01089-w
  60. Galdino, L. B., Fernandes, T., Schmidt, K. E., & Santos, N. A. (2022). Altered brain connectivity during visual stimulation in schizophrenia. Experimental Brain Research, 240(12), 3327 3337. https://doi.org/10.1007/s00221-022-06495-4
  61. Gangopadhyay, P., Chawla, M., Monte, O. D., & Chang, S. W. C. (2021). Prefrontal-Amygdala Circuits in Social Decision-Making. Nature neuroscience, 24(1), 5 18. https://doi.org/10.1038/s41593-020-00738-9
  62. Gogos, A., Sbisa, A. M., Sun, J., Gibbons, A., Udawela, M., & Dean, B. (2015). A Role for Estrogen in Schizophrenia : Clinical and Preclinical Findings. International Journal of Endocrinology, 2015, 615356. https://doi.org/10.1155/2015/615356
  63. González, H. F. J., Narasimhan, S., Goodale, S. E., Johnson, G. W., Doss, D. J., Paulo, D. L., Morgan, V. L., Chang, C., & Englot, D. J. (2023). Arousal and salience network connectivity alterations in surgical temporal lobe epilepsy. Journal of neurosurgery, 138(3), 810 820. https://doi.org/10.3171/2022.5.JNS22837
  64. Gooding, D. C., & Tallent, K. A. (2004). Nonverbal working memory deficits in schizophrenia patients : Evidence of a supramodal executive processing deficit. Schizophrenia Research, 68(2), 189 201. https://doi.org/10.1016/j.schres.2003.07.007
  65. Green, B. L., Wehling, C., & Talsky, G. J. (1987). Group art therapy as an adjunct to treatment for chronic outpatients. Hospital & Community Psychiatry, 38(9), 988 991. https://doi.org/10.1176/ps.38.9.988
  66. Gregory Jr., V. L. (2010). Cognitive-Behavioral Therapy for Schizophrenia : Applications to Social Work Practice. Social Work in Mental Health, 8(2), 140 159. https://doi.org/10.1080/15332980902791086
  67. Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H.-J., Cassara, A. M., Neufeld, E., Kuster, N., Tsai, L.-H., Pascual-Leone, A., & Boyden, E. S. (2017). Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell, 169(6), 1029-1041.e16. https://doi.org/10.1016/j.cell.2017.05.024
  68. Guo, H., Ye, H., Li, Z., Li, X., Huang, W., Yang, Y., Xie, G., Xu, C., Li, X., Liang, W., Jing, H., Zhang, C., Tang, C., & Liang, J. (2023). Amygdala signal abnormality and cognitive impairment in drug-naïve schizophrenia. BMC Psychiatry, 23, 231. https://doi.org/10.1186/s12888-023-04728-6
  69. Häfner, H., & an der Heiden, W. (1997). Epidemiology of schizophrenia. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 42(2), 139 151. https://doi.org/10.1177/070674379704200204
  70. Hamani, C., Mayberg, H., Stone, S., Laxton, A., Haber, S., & Lozano, A. M. (2011). The Subcallosal Cingulate Gyrus in the Context of Major Depression. Biological Psychiatry, 69(4), 301 308. https://doi.org/10.1016/j.biopsych.2010.09.034
  71. Hampton, R. R., Engelberg, J. W. M., & Brady, R. J. (2020). Explicit memory and cognition in monkeys. Neuropsychologia, 138, 107326. https://doi.org/10.1016/j.neuropsychologia.2019.107326
  72. Harvey, C. (2018). Family psychoeducation for people living with schizophrenia and their families. BJPsych Advances, 24(1), 9 19. https://doi.org/10.1192/bja.2017.4
  73. Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A Proposed Function for Hippocampal Theta Rhythm : Separate Phases of Encoding and Retrieval Enhance Reversal of Prior Learning. Neural Computation, 14(4), 793 817. https://doi.org/10.1162/089976602317318965
  74. Hayward, M., Jones, A.-M., Bogen-Johnston, L., Thomas, N., & Strauss, C. (2017). Relating Therapy for distressing auditory hallucinations : A pilot randomized controlled trial. Schizophrenia Research, 183, 137 142. https://doi.org/10.1016/j.schres.2016.11.019
  75. He, H., Hong, L., & Sajda, P. (2023). Pupillary response is associated with the reset and switching of functional brain networks during salience processing. PLOS Computational Biology, 19(5), e1011081. https://doi.org/10.1371/journal.pcbi.1011081
  76. Heimer, L., & Van Hoesen, G. W. (2006). The limbic lobe and its output channels : Implications for emotional functions and adaptive behavior. Neuroscience & Biobehavioral Reviews, 30(2), 126 147. https://doi.org/10.1016/j.neubiorev.2005.06.006
  77. Horwitz, B. (2003). The elusive concept of brain connectivity. Neuroimage, 19(2 Pt 1), 466–470. https://doi.org/10.1016/s1053-8119(03)00112-5
  78. Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia : Version III--the final common pathway. Schizophrenia Bulletin, 35(3), 549 562. https://doi.org/10.1093/schbul/sbp006
  79. Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia : An update for the 21st century. Journal of psychopharmacology (Oxford, England), 29(2), 97 115. https://doi.org/10.1177/0269881114563634
  80. Imai, A., Matsuoka, T., & Narumoto, J. (2023). Emotional Dysregulation in Mild Behavioral Impairment Is Associated with Reduced Cortical Thickness in the Right Supramarginal Gyrus. Journal of Alzheimer’s Disease: JAD, 93(2), 521 532. https://doi.org/10.3233/JAD-220948
  81. Immigration, R. and C. C. (2024, décembre 13). Find your National Occupation Classification (NOC). https://www.canada.ca/en/immigration-refugees-citizenship/services/immigrate-canada/find-national-occupation-code.html
  82. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10 12), 1489 1506. https://doi.org/10.1016/s0042-6989(99)00163-7
  83. Izard, C. E. (2010). The many meanings/aspects of emotion : Definitions, functions, activation, and regulation. Emotion Review, 2(4), 363 370. https://doi.org/10.1177/1754073910374661
  84. Jääskeläinen, E., Juola, P., Hirvonen, N., McGrath, J. J., Saha, S., Isohanni, M., Veijola, J., & Miettunen, J. (2013). A systematic review and meta-analysis of recovery in schizophrenia. Schizophrenia Bulletin, 39(6), 1296 1306. https://doi.org/10.1093/schbul/sbs130
  85. Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry, 148(10), 1301 1308. https://doi.org/10.1176/ajp.148.10.1301
  86. Jiang, W.-L., Cai, D.-B., Sun, C.-H., Yin, F., Goerigk, S., Brunoni, A. R., Zhao, X.-W., Mayes, T. L., Zheng, W., & Xiang, Y.-T. (2022). Adjunctive tDCS for treatment-refractory auditory hallucinations in schizophrenia : A meta-analysis of randomized, double-blinded, sham-controlled studies. Asian Journal of Psychiatry, 73, 103100. https://doi.org/10.1016/j.ajp.2022.103100
  87. Kapur, S. (2003). Psychosis as a state of aberrant salience : A framework linking biology, phenomenology, and pharmacology in schizophrenia. The American Journal of Psychiatry, 160(1), 13 23. https://doi.org/10.1176/appi.ajp.160.1.13
  88. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261 276. https://doi.org/10.1093/schbul/13.2.261
  89. Keefe, R. S. E., Eesley, C. E., & Poe, M. P. (2005). Defining a cognitive function decrement in schizophrenia. Biological Psychiatry, 57(6), 688 691. https://doi.org/10.1016/j.biopsych.2005.01.003
  90. Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W., & Holzmüller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neuroscience Letters, 20(3), 379 382. https://doi.org/10.1016/0304-3940(80)90178-0
  91. Klein-Flügge, M. C., Bongioanni, A., & Rushworth, M. F. S. (2022). Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron, 110(17), 2743 2770. https://doi.org/10.1016/j.neuron.2022.05.022
  92. Kraepelin, E. (1919). Démence précoce et paraphrénie. Barclay RM, trad. Édimbourg, Écosse : ES Livingston,.
  93. Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., Lindquist, M. A., Feldman Barrett, L., & Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109(15), 2404-2412.e5. https://doi.org/10.1016/j.neuron.2021.06.001
  94. Kruk-Slomka, M., & Biala, G. (2021). Cannabidiol Attenuates MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive Avoidance Test in Mice. Molecules (Basel, Switzerland), 26(19), 5977. https://doi.org/10.3390/molecules26195977
  95. Kulkarni, J., de Castella, A., Headey, B., Marston, N., Sinclair, K., Lee, S., Gurvich, C., Fitzgerald, P. B., & Burger, H. (2011). Estrogens and men with schizophrenia : Is there a case for adjunctive therapy? Schizophrenia Research, 125(2 3), 278 283. https://doi.org/10.1016/j.schres.2010.10.009
  96. Kulkarni, J., Riedel, A., de Castella, A. R., Fitzgerald, P. B., Rolfe, T. J., Taffe, J., & Burger, H. (2001). Estrogen—A potential treatment for schizophrenia. Schizophrenia Research, 48(1), 137 144. https://doi.org/10.1016/S0920-9964(00)00088-8
  97. Lakis, N., Jiménez, J. A., Mancini-Marïe, A., Stip, E., Lavoie, M. E., & Mendrek, A. (2011). Neural correlates of emotional recognition memory in schizophrenia : Effects of valence and arousal. Psychiatry Research: Neuroimaging, 194(3), 245 256. https://doi.org/10.1016/j.pscychresns.2011.05.010
  98. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). International Affective Picture System (IAPS) : Technical Manual and Affective Ratings. 1997. https://www2.unifesp.br/dpsicobio/adap/instructions.pdf
  99. LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58(1), 69 79. https://doi.org/10.1016/0166-4328(93)90091-4
  100. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155 184. https://doi.org/10.1146/annurev.neuro.23.1.155
  101. Lefaucheur, J.-P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M. A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., … Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 56 92. https://doi.org/10.1016/j.clinph.2016.10.087
  102. Leucht, S., Priller, J., & Davis, J. M. (2024). Antipsychotic Drugs : A Concise Review of History, Classification, Indications, Mechanism, Efficacy, Side Effects, Dosing, and Clinical Application. American Journal of Psychiatry, 181(10), 865 878. https://doi.org/10.1176/appi.ajp.20240738
  103. Li, R., Ma, X., Wang, G., Yang, J., & Wang, C. (2016). Why sex differences in schizophrenia? Journal of translational neuroscience, 1(1), 37 42.
  104. Li, S., Hu, N., Zhang, W., Tao, B., Dai, J., Gong, Y., Tan, Y., Cai, D., & Lui, S. (2019). Dysconnectivity of Multiple Brain Networks in Schizophrenia : A Meta-Analysis of Resting-State Functional Connectivity. Frontiers in Psychiatry, 10, 482. https://doi.org/10.3389/fpsyt.2019.00482
  105. Lindamer, L. A., Lohr, J. B., Harris, J., & Jeste, D. V. (2004). Gender, Estrogen, and Schizophrenia. Focus, 2(1), 138 145. https://doi.org/10.1176/foc.2.1.138
  106. Lodge, D. J., & Grace, A. A. (2011). Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia. Trends in Pharmacological Sciences, 32(9), 507 513. https://doi.org/10.1016/j.tips.2011.05.001
  107. Luck, S. J., & Gold, J. M. (2008). The construct of attention in schizophrenia. Biological Psychiatry, 64(1), 34 39. https://doi.org/10.1016/j.biopsych.2008.02.014
  108. Lutgens, D., Gariepy, G., & Malla, A. (2017). Psychological and psychosocial interventions for negative symptoms in psychosis : Systematic review and meta-analysis. The British Journal of Psychiatry, 210(5), 324 332. https://doi.org/10.1192/bjp.bp.116.197103
  109. Maclean, P. D. (1949). Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosomatic Medicine, 11(6), 338 353. https://doi.org/10.1097/00006842-194911000-00003
  110. Maclean, P. D. (1952). Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalography and Clinical Neurophysiology, 4(4), 407 418. https://doi.org/10.1016/0013-4694(52)90073-4
  111. Maguire, E. A. (2001). Neuroimaging studies of autobiographical event memory. Philosophical Transactions of the Royal Society of London. Series B, 356(1413), 1441 1451. https://doi.org/10.1098/rstb.2001.0944
  112. Mahdavi, K. D., Jordan, S. E., Jordan, K. G., Rindner, E. S., Haroon, J. M., Habelhah, B., Becerra, S. A., Surya, J. R., Venkatraman, V., Zielinski, M. A., Spivak, N. M., Bystritsky, A., & Kuhn, T. P. (2023). A pilot study of low-intensity focused ultrasound for treatment-resistant generalized anxiety disorder. Journal of Psychiatric Research, 168, 125 132. https://doi.org/10.1016/j.jpsychires.2023.10.039
  113. Malezieux, M., Klein, A. S., & Gogolla, N. (2023). Neural Circuits for Emotion. Annual Review of Neuroscience, 46, 211 231. https://doi.org/10.1146/annurev-neuro-111020-103314
  114. Mălîia, M.-D., Donos, C., Barborica, A., Popa, I., Ciurea, J., Cinatti, S., & Mîndruţă, I. (2018). Functional mapping and effective connectivity of the human operculum. Cortex, 109, 303 321. https://doi.org/10.1016/j.cortex.2018.08.024
  115. Mancini-Marïe, A., Yoon, U., Jiminez, J., Fahim, C., Potvin, S., Grant, J. A., Laverdure-Dupont, D., Dubé, A.-A., Betrisey, C., Rainville, P., Evans, A. C., Stip, E., & Mendrek, A. (2018). Sex, Age, Symptoms and Illness Duration and Their Relation with Gyrification Index in Schizophrenia. Clinical Schizophrenia & Related Psychoses, 12(2), 57 68. https://doi.org/10.3371/CSRP.MAYO.070415
  116. Marder, S. R., & Umbricht, D. (2023). Negative symptoms in schizophrenia : Newly emerging measurements, pathways, and treatments. Schizophrenia Research, 258, 71 77. https://doi.org/10.1016/j.schres.2023.07.010
  117. Markiewicz, R., & Dobrowolska, B. (2020). Cognitive and Social Rehabilitation in Schizophrenia—From Neurophysiology to Neuromodulation. Pilot Study. International Journal of Environmental Research and Public Health, 17(11), Article 11. https://doi.org/10.3390/ijerph17114034
  118. Martinot, J.-L., & Mana, S. (2011). La neuro-imagerie—De la psychiatrie à la pédopsychiatrie—Imagerie et cognition (7). médecine/sciences, 27(6 7), Article 6 7. https://doi.org/10.1051/medsci/2011276017
  119. Matt, E., Radjenovic, S., Mitterwallner, M., & Beisteiner, R. (2024). Current state of clinical ultrasound neuromodulation. Frontiers in Neuroscience, 18. https://doi.org/10.3389/fnins.2024.1420255
  120. McCarley, R. W., Wible, C. G., Frumin, M., Hirayasu, Y., Levitt, J. J., Fischer, I. A., & Shenton, M. E. (1999). MRI anatomy of schizophrenia. Biological Psychiatry, 45(9), 1099 1119. https://doi.org/10.1016/S0006-3223(99)00018-9
  121. McCutcheon, R. A., Reis Marques, T., & Howes, O. D. (2020). Schizophrenia—An Overview. JAMA Psychiatry, 77(2), 201 210. https://doi.org/10.1001/jamapsychiatry.2019.3360
  122. Meltzer, H. Y. (2013). Update on Typical and Atypical Antipsychotic Drugs. Annual Review of Medicine, 64(Volume 64, 2013), 393 406. https://doi.org/10.1146/annurev-med-050911-161504
  123. Menon, V., Gallardo, G., Pinsk, M. A., Nguyen, V.-D., Li, J.-R., Cai, W., & Wassermann, D. (2020). Microstructural organization of human insula is linked to its macrofunctional circuitry and predicts cognitive control. eLife, 9, e53470. https://doi.org/10.7554/eLife.53470
  124. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control : A network model of insula function. Brain structure & function, 214(5 6), 655 667. https://doi.org/10.1007/s00429-010-0262-0
  125. Mijovic, A., & MacCabe, J. H. (2020). Clozapine-induced agranulocytosis. Annals of Hematology, 99(11), 2477 2482. https://doi.org/10.1007/s00277-020-04215-y
  126. Moghaddam, B., & Javitt, D. (2012a). From Revolution to Evolution : The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment. Neuropsychopharmacology, 37(1), 4 15. https://doi.org/10.1038/npp.2011.181
  127. Moghaddam, B., & Javitt, D. (2012b). From Revolution to Evolution : The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment. Neuropsychopharmacology, 37(1), 4 15. https://doi.org/10.1038/npp.2011.181
  128. Molnar-Szakacs, I., & Uddin, L. Q. (2022). Anterior insula as a gatekeeper of executive control. Neuroscience & Biobehavioral Reviews, 139, 104736. https://doi.org/10.1016/j.neubiorev.2022.104736
  129. Moore, L., Kyaw, M., Vercammen, A., Lenroot, R., Kulkarni, J., Curtis, J., O’Donnell, M., Carr, V. J., Shannon Weickert, C., & Weickert, T. W. (2013). Serum testosterone levels are related to cognitive function in men with schizophrenia. Psychoneuroendocrinology, 38(9), 1717 1728. https://doi.org/10.1016/j.psyneuen.2013.02.007
  130. Morera-Fumero, A. L., & Abreu-Gonzalez, P. (2013). Role of Melatonin in Schizophrenia. International Journal of Molecular Sciences, 14(5), 9037 9050. https://doi.org/10.3390/ijms14059037
  131. Morris, R. G. M., Inglis, J., Ainge, J. A., Olverman, H. J., Tulloch, J., Dudai, Y., & Kelly, P. A. T. (2006). Memory reconsolidation : Sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron, 50(3), 479 489. https://doi.org/10.1016/j.neuron.2006.04.012
  132. Morris, R. W., Weickert, C. S., & Loughland, C. M. (2009). Emotional face processing in schizophrenia. Current Opinion in Psychiatry, 22(2), 140 146. https://doi.org/10.1097/YCO.0b013e328324f895
  133. Nieto-Castanon, A. (2020). Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. MA: Hilbert Press.
  134. Nieto-Castanon, A., & Whitfield-Gabrieli, S. (2022). CONN functional connectivity toolbox : RRID SCR_009550 release 22. https://doi.org/10.56441/hilbertpress.2246.5840
  135. Oh, H., & Jagust, W. J. (2013). Frontotemporal network connectivity during memory encoding is increased with aging and disrupted by beta-amyloid. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(47), 18425 18437. https://doi.org/10.1523/JNEUROSCI.2775-13.2013
  136. Oldfield, R. C. (1971). The assessment and analysis of handedness : The Edinburgh inventory. Neuropsychologia, 9(1), 97 113. https://doi.org/10.1016/0028-3932(71)90067-4
  137. Orzelska-Górka, J., Mikulska, J., Wiszniewska, A., & Biała, G. (2022). New Atypical Antipsychotics in the Treatment of Schizophrenia and Depression. International Journal of Molecular Sciences, 23(18), 10624. https://doi.org/10.3390/ijms231810624
  138. Overall, J. E., & Gorham, D. R. (1988). The Brief Psychiatric Rating Scale (BPRS) : Recent developments in ascertainment and scaling. Psychopharmacology Bulletin, 24(1), 97 99.
  139. Oyelade, O. O., & Nkosi‐Mafutha, N. G. (2021). Living beyond the limitation : Rehabilitation, life and productivity of individuals with schizophrenia in South‐West Nigeria. Health Expectations : An International Journal of Public Participation in Health Care and Health Policy, 24(2), 198 208. https://doi.org/10.1111/hex.13139
  140. Palm, U., Hasan, A., Strube, W., & Padberg, F. (2016). tDCS for the treatment of depression : A comprehensive review. European Archives of Psychiatry and Clinical Neuroscience, 266(8), 681 694. https://doi.org/10.1007/s00406-016-0674-9
  141. Papez, J. W. (1937). A PROPOSED MECHANISM OF EMOTION. Archives of Neurology & Psychiatry, 38(4), 725 743. https://doi.org/10.1001/archneurpsyc.1937.02260220069003
  142. Parisi, A., Roberts, R. L., Hanley, A. W., & Garland, E. L. (2022). Mindfulness-Oriented Recovery Enhancement for Addictive Behavior, Psychiatric Distress, and Chronic Pain : A Multilevel Meta-Analysis of Randomized Controlled Trials. Mindfulness, 13(10), 2396 2412. https://doi.org/10.1007/s12671-022-01964-x
  143. Parnas, J., Yttri, J.-E., & Urfer-Parnas, A. (2024). Phenomenology of auditory verbal hallucination in schizophrenia : An erroneous perception or something else? Schizophrenia Research, 265, 83 88. https://doi.org/10.1016/j.schres.2023.03.045
  144. Pedale, T., Mastroberardino, S., Capurso, M., Macrì, S., & Santangelo, V. (2022). Developmental differences in the impact of perceptual salience on short-term memory performance and meta-memory skills. Scientific Reports, 12(1), 8185. https://doi.org/10.1038/s41598-022-11624-8
  145. Peng, X.-J., Hei, G.-R., Yang, Y., Liu, C.-C., Xiao, J.-M., Long, Y.-J., Huang, J., Zhao, J.-P., & Wu, R.-R. (2021). The Association Between Cognitive Deficits and Clinical Characteristic in First-Episode Drug Naïve Patients With Schizophrenia. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.638773
  146. Pessoa, L. (2017). A Network Model of the Emotional Brain. Trends in cognitive sciences, 21(5), 357 371. https://doi.org/10.1016/j.tics.2017.03.002
  147. Pessoa, L. (2023). How many brain regions are needed to elucidate the neural bases of fear and anxiety? Neuroscience and Biobehavioral Reviews, 146, 105039. https://doi.org/10.1016/j.neubiorev.2023.105039
  148. Pope, R. A., Thompson, P. J., Rantell, K., Stretton, J., Wright, M.-A., & Foong, J. (2019). Frontal lobe dysfunction as a predictor of depression and anxiety following temporal lobe epilepsy surgery. Epilepsy Research, 152, 59 66. https://doi.org/10.1016/j.eplepsyres.2019.03.003
  149. Premkumar, P., Fannon, D., Sapara, A., Peters, E. R., Anilkumar, A. P., Simmons, A., Kuipers, E., & Kumari, V. (2015). Orbitofrontal cortex, emotional decision-making and response to cognitive behavioural therapy for psychosis. Psychiatry Research: Neuroimaging, 231(3), 298 307. https://doi.org/10.1016/j.pscychresns.2015.01.013
  150. Qin, K., Yu, Y., Cai, H., Li, J., Zeng, J., & Liang, H. (2024). Effectiveness of mindfulness-based intervention in schizophrenia : A meta-analysis of randomized controlled trials. Psychiatry Research, 334, 115808. https://doi.org/10.1016/j.psychres.2024.115808
  151. Réthelyi, J. (2011). [Diagnosing schizophrenia : From Bleuler to DSM-V]. Neuropsychopharmacologia Hungarica: A Magyar Pszichofarmakologiai Egyesulet Lapja = Official Journal of the Hungarian Association of Psychopharmacology, 13(4), 193 203.
  152. Rolland, B. (2014). Mécanismes dopaminergiques des symptômes schizophréniques et nouvelles perspectives de modulation thérapeutique.
  153. Rolls, E. T., Deco, G., Huang, C.-C., & Feng, J. (2024). The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit versus explore. Cerebral Cortex (New York, N.Y.: 1991), 34(1), bhad416. https://doi.org/10.1093/cercor/bhad416
  154. Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., Fox, P. T., & Eickhoff, S. B. (2012). Modelling neural correlates of working memory : A coordinate-based meta-analysis. NeuroImage, 60(1), 830 846. https://doi.org/10.1016/j.neuroimage.2011.11.050
  155. Sarin, F., & Wallin, L. (2014). Cognitive model and cognitive behavior therapy for schizophrenia : An overview. Nordic Journal of Psychiatry, 68(3), 145 153. https://doi.org/10.3109/08039488.2013.789074
  156. Schacter, D. (1987). Implicit Memory : History and Current Status. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 501 518. https://doi.org/10.1037/0278-7393.13.3.501
  157. Schimmelpfennig, J., Topczewski, J., Zajkowski, W., & Jankowiak-Siuda, K. (2023). The role of the salience network in cognitive and affective deficits. Frontiers in Human Neuroscience, 17, 1133367. https://doi.org/10.3389/fnhum.2023.1133367
  158. Schultz, S. H., North, S. W., & Shields, C. G. (2007). Schizophrenia : A Review. American Family Physician, 75(12), 1821 1829.
  159. Scott, B. H., & Mishkin, M. (2016). Auditory short-term memory in the primate auditory cortex. Brain Research, 1640(Pt B), 264 277. https://doi.org/10.1016/j.brainres.2015.10.048
  160. Seeman, M. V. (2022). Philip Seeman’s contributions to the story of schizophrenia. Psychological Medicine, 52(13), 2401 2403. https://doi.org/10.1017/S0033291721004803
  161. Selemon, L. D., & Zecevic, N. (2015). Schizophrenia : A tale of two critical periods for prefrontal cortical development. Translational Psychiatry, 5(8), e623. https://doi.org/10.1038/tp.2015.115
  162. She, L., Benna, M. K., Shi, Y., Fusi, S., & Tsao, D. Y. (2024). Temporal multiplexing of perception and memory codes in IT cortex. Nature, 629(8013), 861 868. https://doi.org/10.1038/s41586-024-07349-5
  163. Solmi, M., Radua, J., Olivola, M., Croce, E., Soardo, L., Salazar de Pablo, G., Il Shin, J., Kirkbride, J. B., Jones, P., Kim, J. H., Kim, J. Y., Carvalho, A. F., Seeman, M. V., Correll, C. U., & Fusar-Poli, P. (2022). Age at onset of mental disorders worldwide : Large-scale meta-analysis of 192 epidemiological studies. Molecular Psychiatry, 27(1), 281 295. https://doi.org/10.1038/s41380-021-01161-7
  164. Speechley, W. J., Whitman, J. C., & Woodward, T. S. (2010). The contribution of hypersalience to the “jumping to conclusions” bias associated with delusions in schizophrenia. Journal of Psychiatry & Neuroscience : JPN, 35(1), 7 17. https://doi.org/10.1503/jpn.090025
  165. Spitzer, R. L., Williams, J. B. W., Gibbon, M., & First, M. B. (1992). The Structured Clinical Interview for DSM-III-R (SCID) : I: History, Rationale, and Description. Archives of General Psychiatry, 49(8), 624 629. https://doi.org/10.1001/archpsyc.1992.01820080032005
  166. Stephane, M., Dzemidzic, M., & Yoon, G. (2022). Altered corollary discharge in the auditory cortex could reflect louder inner voice experience in patients with verbal hallucinations, a pilot fMRI study. Schizophrenia Research, 243, 475 480. https://doi.org/10.1016/j.schres.2022.02.007
  167. Stępnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current Concepts and Treatments of Schizophrenia. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 23(8), 2087. https://doi.org/10.3390/molecules23082087
  168. Stilo, S. A., & Murray, R. M. (2019). Non-Genetic Factors in Schizophrenia. Current Psychiatry Reports, 21(10), 100. https://doi.org/10.1007/s11920-019-1091-3
  169. Stoliker, D., Novelli, L., Vollenweider, F. X., Egan, G. F., Preller, K. H., & Razi, A. (2024). Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biological Psychiatry, 96(1), 57 66. https://doi.org/10.1016/j.biopsych.2024.01.002
  170. Supramarginal Gyrus—An overview | ScienceDirect Topics. (s. d.). Consulté 20 mars 2025, à l’adresse https://www.sciencedirect.com/topics/neuroscience/supramarginal-gyrus
  171. Suryani, S., Welch, A., & Cox, L. (2013). The Phenomena of Auditory Hallucination as Described by Indonesian People Living With Schizophrenia. Archives of Psychiatric Nursing, 27(6), 312 318. https://doi.org/10.1016/j.apnu.2013.08.001
  172. Takahashi, S. (2013). Heterogeneity of schizophrenia : Genetic and symptomatic factors. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, 162B(7), 648 652. https://doi.org/10.1002/ajmg.b.32161
  173. Tamminga, C. A., Buchanan, R. W., & Gold, J. M. (1998). The role of negative symptoms and cognitive dysfunction in schizophrenia outcome. International Clinical Psychopharmacology, 13 Suppl 3, S21-26. https://doi.org/10.1097/00004850-199803003-00004
  174. Tettamanti, M., Rognoni, E., Cafiero, R., Costa, T., Galati, D., & Perani, D. (2012). Distinct pathways of neural coupling for different basic emotions. NeuroImage, 59(2), 1804 1817. https://doi.org/10.1016/j.neuroimage.2011.08.018
  175. Tholl, S., Sojer, C. A., Schmidt, S. N. L., & Mier, D. (2024). How to elicit a negative bias? Manipulating contrast and saturation with the facial emotion salience task. Frontiers in Psychology, 15, 1284595. https://doi.org/10.3389/fpsyg.2024.1284595
  176. Tseng, P.-T., Zeng, B.-S., Hung, C.-M., Liang, C.-S., Stubbs, B., Carvalho, A. F., Brunoni, A. R., Su, K.-P., Tu, Y.-K., Wu, Y.-C., Chen, T.-Y., Li, D.-J., Lin, P.-Y., Hsu, C.-W., Chen, Y.-W., Suen, M.-W., Satogami, K., Takahashi, S., Wu, C.-K., … Li, C.-T. (2022). Assessment of Noninvasive Brain Stimulation Interventions for Negative Symptoms of Schizophrenia. JAMA Psychiatry, 79(8), 770 779. https://doi.org/10.1001/jamapsychiatry.2022.1513
  177. Tsuang, M. T. (1975). Heterogeneity of schizophrenia. Biological Psychiatry, 10(4), 465 474.
  178. Turkington, D., Dudley, R., Warman, D. M., & Beck, A. T. (2006). Cognitive-Behavioral Therapy for Schizophrenia : A Review. Focus, 4(2), 223 233. https://doi.org/10.1176/foc.4.2.223
  179. Ulrich, G., & Gaebel, W. (1987). [Psychophysiology of schizophrenic disorders of attention—Concepts, findings and working hypotheses]. Fortschritte Der Neurologie-Psychiatrie, 55(9), 279 288. https://doi.org/10.1055/s-2007-1001830
  180. Uno, Y., & Coyle, J. T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry and Clinical Neurosciences, 73(5), 204 215. https://doi.org/10.1111/pcn.12823
  181. Ursin, H., & Kaada, B. R. (1960). Functional localization within the amygdaloid complex in the cat. Electroencephalography and Clinical Neurophysiology, 12(1), 1 20. https://doi.org/10.1016/0013-4694(60)90058-4
  182. van den Heuvel, L. L., Smit, A. M., Stalder, T., Kirschbaum, C., Seedat, S., & Emsley, R. (2022). Hair cortisol levels in schizophrenia and metabolic syndrome. Early Intervention in Psychiatry, 16(8), 902 911. https://doi.org/10.1111/eip.13238
  183. van de Ven, V., Rotarska Jagiela, A., Oertel-Knöchel, V., & Linden, D. E. J. (2017). Reduced intrinsic visual cortical connectivity is associated with impaired perceptual closure in schizophrenia. NeuroImage: Clinical, 15, 45 52. https://doi.org/10.1016/j.nicl.2017.04.012
  184. Vander Ghinst, M., Bourguignon, M., Op de Beeck, M., Wens, V., Marty, B., Hassid, S., Choufani, G., Jousmäki, V., Hari, R., Van Bogaert, P., Goldman, S., & De Tiège, X. (2016). Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene. The Journal of Neuroscience, 36(5), 1596 1606. https://doi.org/10.1523/JNEUROSCI.1730-15.2016
  185. Veale, R., Hafed, Z. M., & Yoshida, M. (2017). How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1714), 20160113. https://doi.org/10.1098/rstb.2016.0113
  186. Velligan, D. I., & Gonzalez, J. M. (2007). Rehabilitation and Recovery in Schizophrenia. Psychiatric Clinics of North America, 30(3), 535 548. https://doi.org/10.1016/j.psc.2007.05.001
  187. Vercammen, A., Skilleter, A. J., Lenroot, R., Catts, S. V., Weickert, C. S., & Weickert, T. W. (2013). Testosterone Is Inversely Related to Brain Activity during Emotional Inhibition in Schizophrenia. PLOS ONE, 8(10), e77496. https://doi.org/10.1371/journal.pone.0077496
  188. Vittala, A., Murphy, N., Maheshwari, A., & Krishnan, V. (2020). Understanding Cortical Dysfunction in Schizophrenia With TMS/EEG. Frontiers in Neuroscience, 14, 554. https://doi.org/10.3389/fnins.2020.00554
  189. Wada, M., Noda, Y., Iwata, Y., Tsugawa, S., Yoshida, K., Tani, H., Hirano, Y., Koike, S., Sasabayashi, D., Katayama, H., Plitman, E., Ohi, K., Ueno, F., Caravaggio, F., Koizumi, T., Gerretsen, P., Suzuki, T., Uchida, H., Müller, D. J., … Nakajima, S. (2022). Dopaminergic dysfunction and excitatory/inhibitory imbalance in treatment-resistant schizophrenia and novel neuromodulatory treatment. Molecular Psychiatry, 27(7), 2950 2967. https://doi.org/10.1038/s41380-022-01572-0
  190. Wada, S., Honma, M., Masaoka, Y., Yoshida, M., Koiwa, N., Sugiyama, H., Iizuka, N., Kubota, S., Kokudai, Y., Yoshikawa, A., Kamijo, S., Kamimura, S., Ida, M., Ono, K., Onda, H., & Izumizaki, M. (2021). Volume of the right supramarginal gyrus is associated with a maintenance of emotion recognition ability. PloS One, 16(7), e0254623. https://doi.org/10.1371/journal.pone.0254623
  191. Walker, E. F., & Diforio, D. (1997). Schizophrenia : A neural diathesis-stress model. Psychological Review, 104(4), 667 685. https://doi.org/10.1037/0033-295x.104.4.667
  192. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012a). Conn : A Functional Connectivity Toolbox for Correlated and Anticorrelated Brain Networks. Brain Connectivity, 2(3), 125 141. https://doi.org/10.1089/brain.2012.0073
  193. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012b). CONN: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity. 23(8), 125 141.
  194. Williams, R., Ostinelli, E. G., Agorinya, J., Minichino, A., De Crescenzo, F., Maughan, D., Puntis, S., Cliffe, C., Kurtulmus, A., Lennox, B. R., & Cipriani, A. (2024). Comparing interventions for early psychosis : A systematic review and component network meta-analysis. EClinicalMedicine, 70, 102537. https://doi.org/10.1016/j.eclinm.2024.102537
  195. Yang, W., Xu, X., Wang, C., Cheng, Y., Li, Y., Xu, S., & Li, J. (2022). Alterations of dynamic functional connectivity between visual and executive-control networks in schizophrenia. Brain Imaging and Behavior, 16(3), 1294 1302. https://doi.org/10.1007/s11682-021-00592-8
  196. Yarwood, M. (s. d.). Russell’s (1980) Circumplex Models. Consulté 19 mars 2025, à l’adresse https://psu.pb.unizin.org/psych425/chapter/circumplex-models/
  197. Yee, A., Greene, S., Weiss, A., Chaudhry, S., & Steadman, S. (2024). Hospitalization and help-seeking among first episode psychosis patients. Discover Mental Health, 4(1), 10. https://doi.org/10.1007/s44192-024-00064-7
  198. Zeevi, L., Irani, M., Catana, C., Feldman Barrett, L., & Atzil, S. (2022). Maternal dopamine encodes affective signals of human infants. Social Cognitive and Affective Neuroscience, 17(5), 503 509. https://doi.org/10.1093/scan/nsab116
  199. Zhai, Z., Ren, L., Song, Z., Xiang, Q., Zhuo, K., Zhang, S., Li, X., Zhang, Y., Jiao, X., Tong, S., Sun, J., & Liu, D. (2023). The efficacy of low-intensity transcranial ultrasound stimulation on negative symptoms in schizophrenia : A double-blind, randomized sham-controlled study. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 16(3), 790 792. https://doi.org/10.1016/j.brs.2023.04.021
  200. Zhang, Y., Yang, Y., Zhu, L., Zhu, Q., Jia, Y., Zhang, L., Peng, Q., Wang, J., Liu, J., Fan, W., & Wang, J. (2021). Volumetric Deficit Within the Fronto-Limbic-Striatal Circuit in First-Episode Drug Naïve Patients With Major Depression Disorder. Frontiers in Psychiatry, 11, 600583. https://doi.org/10.3389/fpsyt.2020.600583
  201. Zheng, G., Zhou, Y., Zhou, J., Liang, S., Li, X., Xu, C., Xie, G., & Liang, J. (2023). Abnormalities of the Amygdala in schizophrenia : A real world study. BMC Psychiatry, 23(1), 615. https://doi.org/10.1186/s12888-023-05031-0
  202. Zotev, V., Phillips, R., Young, K. D., Drevets, W. C., & Bodurka, J. (2013). Prefrontal Control of the Amygdala during Real-Time fMRI Neurofeedback Training of Emotion Regulation. PLoS ONE, 8(11), e79184. https://doi.org/10.1371/journal.pone.0079184