Perspective
Vol. 1 No. 1 (2022): Research and perspectives in educational neuroscience
Mieux comprendre les mécanismes cérébraux d’apprentissage pour faciliter la mise en application des connaissances issues de la recherche et favoriser la réussite scolaire des élèves
Université du Québec à Montréal
Abstract
Often referred to as the "decade of the brain," the decade of the 1990s was marked by the growth of neuroscience knowledge and the advent of new brain imaging technologies. These advances in neuroscience gradually led the research community to question the potential impact of neuroscientific knowledge on the field of education. A new interdisciplinary research approach has thus emerged: neuroeducation. This approach focuses on problems specific to the field of education using a level of analysis that is that of brain function. Neuroeducation therefore seeks to establish a bridge between brain functioning, the mechanisms related to learning and teaching. In the opinion of several researchers and international organizations, a better understanding of the brain could indeed provide interesting avenues to better understand what characterizes different learning processes at the brain level and, ultimately, guide the choice of pedagogical approaches that are better adapted to the organization and functioning of the students' brain. On the one hand, neuroeducation allows for a more fundamental understanding of various school learning processes by focusing on the changes that occur during learning through brain plasticity. On the other hand, several studies have shown that neuroplasticity is not infinite and has certain limits. It would indeed be influenced by different constraints, in particular by the initial structure and organization of the brain, i.e. the cerebral architecture prior to learning. In line with research in cognitive psychology, neuroeducational research findings already provide valuable insights to orient the choice of teaching strategies. Nevertheless, the application of research findings to the classroom presents a considerable challenge. In this respect, the present article aims to discuss the idea that a better understanding of the brain mechanisms of learning could facilitate the application of research findings and thus promote the academic success of students.
References
- Allaire-Duquette, G., Brault Foisy, L. M., Potvin, P., Riopel, M., Larose, M., & Masson, S. (2021). An fMRI study of scientists with a Ph. D. in physics confronted with naive ideas in science. NPJ science of learning, 6(1), 1-12. https://doi.org/10.1038/s41539-021-00091-x
- Ansari, D., De Smedt, B. et Grabner, R. H. (2012). Neuroeducation – A critical overview of an emerging field. Neuroethics, 5(2), 105-117. https://doi.org/10.1007/s12152-011-9119-3
- Antony, J. W., Gobel, E. W., O'hare, J. K., Reber, P. J. et Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature neuroscience, 15(8), 1114. https://doi.org/10.1038/nn.3152
- Battro, A. M. et Cardinali, D. P. (1996). Más cerebro en la educación [More brain in education] [Electronic version]. La Nación. Récupéré de http://catamarcaemprende.com/wp-content/uploads/2008/03/cereln.pdf
- Battro, A. M., Fischer, K. W. et Léna, P. J. (dir.). (2010). The educated brain: Essays in neuroeducation. Cambridge University Press. https://doi.org/10.1017/CBO9780511489907
- Berlucchi, G. et Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319. https://doi.org/10.1007/s00221-008-1611-6
- Brault Foisy, L.-M., Masson, S., Potvin, P. et Riopel, M. (2015). Is inhibition involved in overcoming a common physics misconception in mechanics?, Trends in Neuroscience and Education, 4, 26-36. http://dx.doi.org/10.1016/j.tine.2015.03.001
- Callan, D. E. et Schweighofer, N. (2010). Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient‐processing theory. Human Brain Mapping, 31(4), 645-659. https://doi.org/10.1002/hbm.20894
- Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13-19. https://doi.org/10.1016/S0193-3973(99)00046-5
- Chen, O., Paas, F., & Sweller, J. (2021). Spacing and interleaving effects require distinct theoretical bases: a systematic review testing the cognitive load and discriminative-contrast hypotheses. Educational Psychology Review, 33(4), 1499-1522. https://doi.org/10.1007/s10648-021-09613-w
- Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. Dans S. Dehaene, J. R. Duhamel, M. Hauser et G. Rizzolatti (dir.), From monkey brain to human brain (p. 133-157). Cambridge, Massachusetts : MIT Press.
- Dehaene, S. (2008). Cerebral constraints in reading and arithmetic: Education as a ‘‘neuronal recycling’’process. Dans A. M. Battro, K. W. Fischer et P. J. Léna (dir.), The educated brain: Essays in neuroeducation (p. 232-247). Cambridge : Cambridge University Press. https://doi.org/10.1017/CBO9780511489907.016
- Dehaene, S. et Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398. https://doi.org/10.1016/j.neuron.2007.10.004
- Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., ... Cohen, L. (2010). How Learning to Read Changes the Cortical Networks for Vision and Language. Science, 330(6009), 1359-1364. https://doi.org/10.1126/science.1194140
- Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., ... Felber, S. (2005). Learning by strategies and learning by drill — evidence from an fMRI study. Neuroimage, 25(3), 838-849. https://doi.org/10.1016/j.neuroimage.2004.12.009
- Fischer, K. W. (2009). Mind, brain, and education: building a scientific groundwork for learning and teaching1. Mind, Brain, and Education, 3(1), 3-16. https://doi.org/10.1111/j.1751-228X.2008.01048.x
- Fischer, K. W., Daniel, D. B., Immordino-Yang, M. H., Stern, E., Battro, A. et Koizumi, H. (2007). Why mind, brain, and education? Why now? Mind, Brain, and Education, 1(1), 1-2. https://doi.org/10.1111/j.1751-228X.2007.00006.x
- Fischer, K. W., Goswami, U., Geake, J. et The Task Force on the Future of Educational Neuroscience (2010). The future of educational neuroscience. Mind, Brain, and Education, 4 (2), 68-80. https://doi.org/10.1111/j.1751-228X.2010.01086.x
- Forman, S. G. (2015). Implementation of mental health programs in schools: A change agent's guide. Washington, DC: American Psychological Association Books. https://doi.org/10.1037/14597-007
- Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. et Wenderoth, M. P. (2014, Jun 10). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8410-8415.: https://doi.org/10.1073/pnas.1319030111
- Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Friston, K. J. (2009). Repetition suppression and plasticity in the human brain. Neuroimage, 48(1), 269-279. https://doi.org/10.1016/j.neuroimage.2009.06.034
- Geake, J. (2009). The Brain At School: Educational Neuroscience In The Classroom. McGraw-Hill Education (UK).
- Geake, J. et Cooper, P. (2003). Cognitive Neuroscience: implications for education? Westminster Studies in Education, 26(1), 7-20. https://doi.org/10.1080/0140672030260102
- Goswami, U. (2006). Neuroscience and education: from research to practice? Nature reviews neuroscience, 7(5), 406. https://doi.org/10.1038/nrn1907
- Goswami, U. (2008). Principles of learning, implications for teaching: A cognitive neuroscience perspective. Journal of Philosophy of Education, 42(3-4), 381- 399. https://doi.org/10.1111/j.1467-9752.2008.00639.x
- Hattie, J. (2013). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Abingdon : Routledge. ISBN 0-203-88733-6 Master e-book ISBN
- Hattie, J. (2015). The applicability of Visible Learning to higher education. Scholarship of Teaching and Learning in Psychology, 1(1), 79. https://doi.org/10.1037/stl0000021
- Hattie, J. et Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/10.3102/003465430298487
- Hebb, D.O. (1949). The organization of behaviour: A neuropsychological theory. New-York : Wiley.
- Houdé, O. (2014). Apprendre à résister. Paris : Le Pommier.
- Houdé, O., Kayser, D., Koenig, O., Proust, J. et Rastier, F. (dir.). (2004). Dictionary of cognitive science: neuroscience, psychology, artificial intelligence, linguistics, and philosophy. New-York : Routledge.
- Houdé, O., Zago, L., Crivello, F., Moutier, S., Pineau, A., Mazoyer, B. et Tzourio- Mazoyer, N. (2001). Access to deductive logic depends on a right ventromedial prefrontal area devoted to emotion and feeling: Evidence from a training paradigm. NeuroImage, 14, 1486-1492. https://doi.org/10.1006/nimg.2001.0930
- Kim, A. S. N., Wong-Kee-You, A. M. B., Wiseheart, M., & Rosenbaum, R. S. (2019). The spacing effect stands up to big data. Behavior Research Methods, 51(4), 1485-1497. https://doi.org/10.3758/s13428-018-1184-7
- Kornell, N. (2009). Optimising learning using flashcards: Spacing is more effective than cramming. Applied Cognitive Psychology, 23(9), 1297-1317. https://doi.org/10.1002/acp.1537
- Kornmeier, J., Sosic-Vasic, Z., & Joos, E. (2022). Spacing Learning Units affects both learning and forgetting. Trends in Neuroscience and Education, 100173. https://doi.org/10.1016/j.tine.2022.100173
- Kwok, V., Niu, Z., Kay, P., Zhou, K., Mo, L., Jin, Z., ... Tan, L. H. (2011). Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proceedings of the National Academy of Sciences, 108(16), 6686-6688. https://doi.org/10.1073/pnas.1103217108
- Liu, X. (2001). Synthesizing research on student conceptions in science. International Journal of Science Education, 23, 55-81. https://doi.org/10.1080/09500690119778
- Masson, S. (2012). Neuroeducation: Understanding the brain to improve teaching. Neuroeducation, 1(1), 1-2.
- Masson, S. (2015). Les apports de la neuroeducation a I'enseignement: des neuromythes aux decouvertes actuelles. Approche neuropsychologique des apprentissages chez I'enfant, 134, 11-22.
- Masson, S. (2014). Cerveau, apprentissage et enseignement: mieux connaître le cerveau peut-il nous aider à mieux enseigner. Éducation Canada, 54(4), 40-43.
- Masson, S. (2020). Activer ses neurones: pour mieux apprendre et enseigner. Odile Jacob.
- Masson, S. et Brault Foisy, L. M. (2014). Fundamental concepts bridging education and the brain. McGill Journal of Education, 49(2), 501-512. https://doi.org/10.7202/1029432ar .
- Masson, S., Potvin, P., Riopel, M. et Brault Foisy, L.-M. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8(1), 37- 48. https://doi.org/10.1111/mbe.12043
- McCandliss, B. D. (2010). Educational neuroscience: The early years. Proceedings of the National Academy of Sciences, 107(18), 8049-8050. https://doi.org/10.1073/pnas.1003431107
- Mesibov, G. B., & Shea, V. (2011). Evidence-based practices and autism. Autism, 15(1), 114-133. https://doi.org/10.1177/1362361309348070
- Monchi, O., Petrides, M., Petre, V., Worsley, K., et Dagher, A. (2001). Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21(19), 7733-7741. https://doi.org/10.1523/JNEUROSCI.21-19-07733.2001
- Newton, P. M. (2015). The learning styles myth is thriving in higher education. Frontiers in Psychology, 6, 1908. https://doi.org/10.3389/fpsyg.2015.01908
- OCDE (2007). Comprendre le cerveau : naissance d'une nouvelle science de l'apprentissage. Paris: Éditions de l'OCDE.
- Peters, S., Braams, B. R., Raijmakers, M. E., Koolschijn, P. C. M., & Crone, E. A. (2014). The neural coding of feedback learning across child and adolescent development. Journal of Cognitive Neuroscience, 26(8), 1705-1720. https://doi.org/10.1162/jocn_a_00594
- Potvin, P., Masson, S., Lafortune, S. et Cyr, G. (2014). Persistence of the intuitive conception that heavier objects sink more: A reaction time study with different levels of interference. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-014- 9520-6
- Reddy, L. A., Forman, S. G., Stoiber, K. C. et Gonzalez, J. E. (2017). A national investigation of school psychology trainers’attitudes and beliefs about evidence-based practices. Psychology in the Schools, 54(3), 261-278. https://doi.org/10.1002/pits.21999
- Pascual-Leone, A., Amedi, A., Fregni, F. et Merabet, L. B. (2005). The plastic human brain cortex. Annual Review Neuroscience, 28, 377-401. https://doi.org/10.1146/annurev.neuro.27.070203.144216
- Pasquinelli, E. (2011). Knowledge‐and evidence‐based education: Reasons, trends, and contents. Mind, Brain, and Education, 5(4), 186-195. https://doi.org/10.1111/j.1751-228X.2011.01128.x
- Pasquinelli, E. (2015). Améliorer le dialogue entre les sciences cognitives et l’éducation en s’inspirant des relations entre la recherche fondamentale et la médecine clinique. Approche neuropsychologique des apprentissages chez l’enfant, 134, 23-30
- Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence: conceptual prevalence. Neuroéducation, 2(1), 16-43. https://doi.org/10.24046/neuroed.20130201.16
- Royal Society (2011). Neuroscience: Implications for education and lifelong learning. London : The Royal Society.
- Simpson, R. (2005). Evidence-based practice in developmental disabilities: What is it and why does it matter? Journal on Developmental Disabilities, 12, 167–171.
- Slavin, R. E. (2002). Evidence-based education policies: Transforming educational practice and research. Educational researcher, 31(7), 15-21. https://doi.org/10.3102/0013189X031007015
- Smolen, P., Zhang, Y. et Byrne, J. H. (2016). The right time to learn: mechanisms and optimization of spaced learning. Nature Reviews Neuroscience, 17(2), 77. https://doi.org/10.1038/nrn.2015.18
- Spitzer, M. (2012). Education and neuroscience. Trends in Neuroscience and Education, 1(1), 1-2. https://doi.org/10.1016/j.tine.2012.09.002
- Stephenson, J. (2009). Best practice? Advice provided to teachers about the use of Brain Gym in australian schools. Australian Journal of Education, 53(2), 109- 124. https://research.acer.edu.au/aje/vol53/iss2/1
- Van der Kleij, F. M., Feskens, R. C. W. et Eggen, T. J. H. M. (2015). Effects of Feedback in a Computer-Based Learning Environment on Students’ Learning Outcomes. Review of Educational Research, 85(4), 475-511. https://doi.org/10.3102/0034654314564881
- Van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E. et Crone, E. A. (2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. Journal of Neuroscience, 28(38), 9495-9503. https://doi.org/10.1523/JNEUROSCI.1485-08.2008
- Yoncheva, Y. N., Blau, V. C., Maurer, U. et McCandliss, B. D. (2010). Attentional focus during learning impacts N170 ERP responses to an artificial script. Developmental Neuropsychology, 35(4), 423-445. https://doi.org/10.1080/87565641.2010.480918
- Ward, J. (2010). The student's guide to cognitive neuroscience: Second edition. New York : Psychology Press.
- Wilkinson, L., Tai, Y. F., Lin, C. S., Lagnado, D. A., Brooks, D. J., Piccini, P. et Jahanshahi, M. (2014, Oct). Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not. Hum Brain Mapp, 35(10), 5106-5115. https://doi.org/10.1002/hbm.22536
- Willingham, D. (2013, 26 mars). A New Push for Science in Education in Britain. [Billet de blogue]. Récupéré de http://www.danielwillingham.com/daniel-willingham-science-and-education-blog/category/teaching
- Wilson, R. C., Shenhav, A., Straccia, M. et Cohen, J. D. (2019). The eighty five percent rule for optimal learning. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12552-4