Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Articles

Vol. 1 No. 2 (2022): Cortica II : Remue-méninges de la santé mentale

Différences entre les sexes et densités de matière grise et blanche basées sur les symptômes dans la schizophrénie

DOI
https://doi.org/10.26034/cortica.2022.3137
Soumise
August 29, 2022
Publié-e
2022-09-20

Résumé

Nous avons étudié l’association entre les phénotypes des densités dans matière grise (GMD) et de la substance blanche (WMD) et les symptômes positifs (PS) et négatifs (NS) chez 40 patients schizophrènes (SZ). Les densités cérébrales ont été comparées à 41 témoins normaux (NC) appariés pour l’âge et le sexe en utilisant la morphométrie à base de voxel sur d’images IRM T1-3T. Nous avons constaté une diminution de la GMD dans le gyri cingulaire-temporal antérieur et une augmentation de la GMD dans le gyrus cingulaire postérieur en SZ par rapport à NC. Une réduction des WMD a été observée dans les régions frontal inferieur et pariétales postérieures chez le SZ par rapport à la NC. La GMD dans l’insula/caudate était corrélée avec le PS, tandis que la GMD dans le gyrus frontal moyen et le cervelet étaient en corrélation avec la NS. Le WMD dans les régions frontales moyennes et frontales supérieures étaient corrélées avec le PS et le NS respectivement. Des corrélations inverses ont été trouvées entre la GMD dans le lobe pariétal et la vermis avec PS. Une corrélation inverse a été trouvée entre la GMD dans le cervelet et la NS. Une corrélation inverse a également été trouvée dans les WMD de la région occipitale et des régions frontales supérieures avec PS et NS respectivement. La comparaison entre les groupes hommes a révélé une diminution du GMD total chez les patients hommes, tandis qu’aucune différence n’a été observée entre les groupes femmes. Ces résultats corrélationnels suggèrent que les profils de symptômes dans la schizophrénie montrent des phénotypes GM / WM uniques

Références

  1. Abbs, B., Liang, L., Makris, N., Tsuang, M., Seidman, L. J., & Goldstein, J. M. (2011). Covariance modeling of MRI brain volumes in memory circuitry in schizophrenia: Sex differences are critical. NeuroImage, 56(4), 1865-1874. https://doi.org/10.1016/j.neuroimage.2011.03.079 DOI: https://doi.org/10.1016/j.neuroimage.2011.03.079
  2. Allen, D. N., Strauss, G. P., Barchard, K. A., Vertinski, M., Carpenter, W. T., & Buchanan, R. W. (2013). Differences in developmental changes in academic and social premorbid adjustment between males and females with schizophrenia. Schizophrenia research, 146(1-3), 132-137. DOI: https://doi.org/10.1016/j.schres.2013.01.032
  3. Alemán-Gómez, Y., Najdenovska, E., Roine, T., Fartaria, M. J., Canales-Rodríguez, E. J., Rovó, Z., Hagmann, P., Conus, P., Do, K. Q., Klauser, P., Steullet, P., Baumann, P. S., & Bach Cuadra, M. (2020). Partial-volume modeling reveals reduced gray matter in specific thalamic nuclei early in the time course of psychosis and chronic schizophrenia. Human brain mapping, 41(14), 4041–4061. https://doi.org/10.1002/hbm.25108 DOI: https://doi.org/10.1002/hbm.25108
  4. Allen, P. P., Johns, L. C., Fu, C. H., Broome, M. R., Vythelingum, G. N., & McGuire, P. K. (2004). Misattribution of external speech in patients with hallucinations and delusions. Schizophrenia research, 69(2-3), 277-287. https://doi.org/10.1016/j.schres.2013.01.032 DOI: https://doi.org/10.1016/j.schres.2003.09.008
  5. An, I., Choi, T. K., Bang, M., & Lee, S. H. (2021). White Matter Correlates of Hostility and Aggression in the Visuospatial Function Network in Patients With Schizophrenia. Frontiers in psychiatry, 12, 734488. https://doi.org/10.3389/fpsyt.2021.734488 DOI: https://doi.org/10.3389/fpsyt.2021.734488
  6. American Psychiatric Association (Ed.). (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.): Washington, DC.
  7. Andreasen, N. C., Ehrhardt, J. C., Swayze, V. W., 2nd, Alliger, R. J., Yuh, W. T., Cohen, G., et al. (1990). Magnetic resonance imaging of the brain in schizophrenia. The pathophysiologic significance of structural abnormalities. Archives of general psychiatry, 47(1), 35-44. DOI: https://doi.org/10.1001/archpsyc.1990.01810130037006
  8. Andreasen, N. C., Flaum, M., Swayze, V. W., 2nd, Tyrrell, G., & Arndt, S. (1990). Positive and negative symptoms in schizophrenia. A critical reappraisal. Archives of general psychiatry, 47(7), 615-621. https://doi.org/10.1001/archpsyc.1990.01810190015002 DOI: https://doi.org/10.1001/archpsyc.1990.01810190015002
  9. Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological psychiatry, 64(2), 81-88. DOI: https://doi.org/10.1016/j.biopsych.2008.01.003
  10. Andreasen, N. C., Shore, D., Burke, J. D., Jr., Grove, W. M., Lieberman, J. A., Oltmanns, T. F., et al. (1988). Clinical phenomenology. Schizophrenia bulletin, 14(3), 345-363. https://doi.org/10.1093/schbul/14.3.345 DOI: https://doi.org/10.1093/schbul/14.3.345
  11. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral cortex, 5(1), 56-63. DOI: https://doi.org/10.1093/cercor/5.1.56
  12. Asami, T., Hyuk Lee, S., Bouix, S., Rathi, Y., Whitford, T. J., Niznikiewicz, M., et al. (2014). Cerebral white matter abnormalities and their associations with negative but not positive symptoms of schizophrenia. Psychiatry research, 222(1-2), 52-59. https://doi.org/10.1016/j.pscychresns.2014.02.007 DOI: https://doi.org/10.1016/j.pscychresns.2014.02.007
  13. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95-113. https://doi.org/10.1016/j.neuroimage.2007.07.007 DOI: https://doi.org/10.1016/j.neuroimage.2007.07.007
  14. Ashburner, J., & Friston, K. J. (2001). Why voxel-based morphometry should be used. NeuroImage, 14(6), 1238-1243. https://doi.org/10.1006/nimg.2001.0961 DOI: https://doi.org/10.1006/nimg.2001.0961
  15. Ashburner, J., & Friston, K. J. (2009). Computing average shaped tissue probability templates. NeuroImage, 45(2), 333-341. https://doi.org/10.1016/j.neuroimage.2008.12.008 DOI: https://doi.org/10.1016/j.neuroimage.2008.12.008
  16. Astor, R. S., Ortiz, M.L., Sutherland, R.J. . (1998 ). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93 185-190. https://doi.org/10.1016/s0166-4328(98)00019-9 DOI: https://doi.org/10.1016/S0166-4328(98)00019-9
  17. Batty, M. J., Liddle, E. B., Pitiot, A., Toro, R., Groom, M. J., Scerif, G., et al. (2010). Cortical gray matter in attention-deficit/hyperactivity disorder: a structural magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 229-238. https://doi.org/10.1016/j.jaac.2009.11.008 DOI: https://doi.org/10.1097/00004583-201003000-00006
  18. Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in clinical neuroscience, 9(2), 141-151. https://doi.org/10.31887/DCNS.2007.9.2/rbonelli DOI: https://doi.org/10.31887/DCNS.2007.9.2/rbonelli
  19. Bracht, T., Viher, P. V., Stegmayer, K., Strik, W., Federspiel, A., Wiest, R., & Walther, S. (2019). Increased structural connectivity of the medial forebrain bundle in schizophrenia spectrum disorders is associated with delusions of paranoid threat and grandiosity. NeuroImage. Clinical, 24, 102044. https://doi.org/10.1016/j.nicl.2019.102044 DOI: https://doi.org/10.1016/j.nicl.2019.102044
  20. Brebion, G., Villalta-Gil, V., Autonell, J., Cervilla, J., Dolz, M., Foix, A., et al. (2013). Cognitive correlates of verbal memory and verbal fluency in schizophrenia, and differential effects of various clinical symptoms between male and female patients. Schizophrenia research, 147(1), 81-85. https://doi.org/10.1016/j.schres.2013.03.014 DOI: https://doi.org/10.1016/j.schres.2013.03.014
  21. Brosch, K., Stein, F., Schmitt, S., Pfarr, J. K., Ringwald, K. G., Thomas-Odenthal, F., Meller, T., Steinsträter, O., Waltemate, L., Lemke, H., Meinert, S., Winter, A., Breuer, F., Thiel, K., Grotegerd, D., Hahn, T., Jansen, A., Dannlowski, U., Krug, A., Nenadić, I Kircher, T. (2022). Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Molecular psychiatry, 10.1038/s41380-022-01687-4. Advance online publication. https://doi.org/10.1038/s41380-022-01687-4 DOI: https://doi.org/10.1038/s41380-022-01687-4
  22. Chang, W. C., Hui, C. L., Tang, J. Y., Wong, G. H., Lam, M. M., Chan, S. K., et al. (2011). Persistent negative symptoms in first-episode https://doi.org/10.1016/j.schres.2011.09.006 Choi, J. S., Chon, M. W., Kang, D. H., Jung, M. H., & Kwon, J. S. (2009). Gender difference in the prodromal symptoms of first-episode schizophrenia. Journal of Korean medical science, 24(6), 1083-1088. https://doi.org/10.3346/jkms.2009.24.6.1083 DOI: https://doi.org/10.3346/jkms.2009.24.6.1083
  23. Dazzan, P., Soulsby, B., Mechelli, A., Wood, S. J., Velakoulis, D., Phillips, L. J., et al. (2012). Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk of psychosis. Schizophrenia bulletin, 38(5), 1083-1091. https://doi.org/10.1093/schbul/sbr035 DOI: https://doi.org/10.1093/schbul/sbr035
  24. Eickhoff S, Walters NB, Schleicher A, Kril J, Egan GF, Zilles K, Watson JD, Amunts K. High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Hum Brain Mapp. 2005 Mar;24(3):206-15. doi: 10.1002/hbm.20082. DOI: https://doi.org/10.1002/hbm.20082
  25. Ellison-Wright, I., Glahn, D. C., Laird, A. R., Thelen, S. M., & Bullmore, E. (2008). The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. The American journal of psychiatry, 165(8), 1015-1023. https://doi.org/10.1176/appi.ajp.2008.07101562 DOI: https://doi.org/10.1176/appi.ajp.2008.07101562
  26. Fahim, C., Stip, E., Mancini-Marie, A., Mensour, B., Boulay, L. J., Leroux, J. M., et al. (2005). Brain activity during emotionally negative pictures in schizophrenia with and without flat affect: an fMRI study. Psychiatry Res, 140(1), 1-15. https://doi.org/10.1016/j.pscychresns.2005.06.003 DOI: https://doi.org/10.1016/j.pscychresns.2005.06.003
  27. Fuentes-Claramonte, P., Ramiro, N., Torres, L., Argila-Plaza, I., Salgado-Pineda, P., Soler-Vidal, J., García-León, M. Á., Albacete, A., Bosque, C., Panicalli, F., Boix, E., Munuera, J., Tristany, J., Sarró, S., Bernardo, M., Salvador, R., McKenna, P. J., & Pomarol-Clotet, E. (2022). Negative schizophrenic symptoms as prefrontal cortex dysfunction: Examination using a task measuring goal neglect. NeuroImage. Clinical, 35, 103119. https://doi.org/10.1016/j.nicl.2022.103119 DOI: https://doi.org/10.1016/j.nicl.2022.103119
  28. Garcia-Marti, G., Aguilar, E. J., Lull, J. J., Marti-Bonmati, L., Escarti, M. J., Manjon, J. V., et al. (2008). Schizophrenia with auditory hallucinations: a voxel-based morphometry study. Progress in neuro-psychopharmacology & biological psychiatry, 32(1), 72-80. https://doi.org/10.1016/j.pnpbp.2007.07.014 DOI: https://doi.org/10.1016/j.pnpbp.2007.07.014
  29. Gaser, C., Nenadic, I., Volz, H. P., Buchel, C., & Sauer, H. (2004). Neuroanatomy of "hearing voices": a frontotemporal brain structural abnormality associated with auditory hallucinations in schizophrenia. Cerebral cortex, 14(1), 91-96. https://doi.org/10.1093/cercor/bhg107 DOI: https://doi.org/10.1093/cercor/bhg107
  30. Geschwind, N., & Galaburda, A. M. (1985). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of neurology, 42(5), 428-459. https://doi.org/10.1001/archneur.1985.04060050026008 DOI: https://doi.org/10.1001/archneur.1985.04060050026008
  31. Gasquoine P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology review, 24(2), 77–87. https://doi.org/10.1007/s11065-014-9246-9 DOI: https://doi.org/10.1007/s11065-014-9246-9
  32. Goldstein, J. M., Seidman, L. J., Goodman, J. M., Koren, D., Lee, H., Weintraub, S., et al. (1998). Are there sex differences in neuropsychological functions among patients with schizophrenia? The American journal of psychiatry, 155(10), 1358-1364. https://doi.org/10.1176/ajp.155.10.1358 DOI: https://doi.org/10.1176/ajp.155.10.1358
  33. Golkar, A., Lonsdorf, T. B., Olsson, A., Lindstrom, K. M., Berrebi, J., Fransson, P., et al. (2012). Distinct contributions of the dorsolateral prefrontal and orbitofrontal cortex during emotion regulation. PloS one, 7(11), e48107. https://doi.org/10.1371/journal.pone.0048107 DOI: https://doi.org/10.1371/journal.pone.0048107
  34. Gur, R. E., Cowell, P. E., Latshaw, A., Turetsky, B. I., Grossman, R. I., Arnold, S. E., et al. (2000). Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Archives of general psychiatry, 57(8), 761-768. https://doi.org/10.1001/archpsyc.57.8.761 DOI: https://doi.org/10.1001/archpsyc.57.8.761
  35. He, Y., Li, K., Li, J., Wang, J., Cheng, N., Xiao, J., & Jiang, T. (2021). Cingulum White Matter Integrity as a Mediator Between Harm Avoidance and Hostility. Neuroscience, 461,36–43. https://doi.org/10.1016/j.neuroscience.2021.02.031 DOI: https://doi.org/10.1016/j.neuroscience.2021.02.031
  36. Heath, R. G., Franklin, D. E., & Shraberg, D. (1979). Gross pathology of the cerebellum in patients diagnosed and treated as functional psychiatric disorders. The Journal of nervous and mental disease, 167(10), 585-592. https://doi.org/10.1097/00005053-197910000-00001 DOI: https://doi.org/10.1097/00005053-197910000-00001
  37. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of neurology, 55(4), 530-540. https://doi.org/10.1002/ana.20032 DOI: https://doi.org/10.1002/ana.20032
  38. Hinton, E. C., Wise, R. G., Singh, K. D., & von Hecker, U. (2014). Reasoning with linear orders: differential parietal cortex activation in sub-clinical depression. An FMRI investigation in sub-clinical depression and controls. Frontiers in human neuroscience, 8, 1061. https://doi.org/10.3389/fnhum.2014.01061 DOI: https://doi.org/10.3389/fnhum.2014.01061
  39. Hoptman, M. J., D'Angelo, D., Catalano, D., Mauro, C. J., Shehzad, Z. E., Kelly, A. M., et al. (2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia bulletin, 36(5), 1020-1028. https://doi.org/10.1093/schbul/sbp012 DOI: https://doi.org/10.1093/schbul/sbp012
  40. Hoptman, M. J., Volavka, J., Johnson, G., Weiss, E., Bilder, R. M., & Lim, K. O. (2002). Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study. Biological psychiatry, 52(1), 9-14. https://doi.org/10.1016/s0006-3223(02)01311-2 DOI: https://doi.org/10.1016/S0006-3223(02)01311-2
  41. Hurvich, C. M., & Tsai, C. L. (1995). Model selection for extended quasi-likelihood models in small samples. Biometrics, 51(3), 1077-1084. DOI: https://doi.org/10.2307/2533006
  42. Jablensky, A. (2006). Subtyping schizophrenia: implications for genetic research. Molecular psychiatry, 11(9), 815-836. https://doi.org/10.1038/sj.mp.4001857 DOI: https://doi.org/10.1038/sj.mp.4001857
  43. Jablensky, A. (2010). The diagnostic concept of schizophrenia: its history, evolution, and future prospects. Dialogues in clinical neuroscience, 12(3), 271-287. https://doi.org/10.31887/DCNS.2010.12.3/ajablensky DOI: https://doi.org/10.31887/DCNS.2010.12.3/ajablensky
  44. Jimenez, J. A., Mancini-Marie, A., Lakis, N., Rinaldi, M., & Mendrek, A. (2010). Disturbed sexual dimorphism of brain activation during mental rotation in schizophrenia. Schizophrenia research, 122(1-3), 53-62. https://doi.org/10.1016/j.schres.2010.03.011 DOI: https://doi.org/10.1016/j.schres.2010.03.011
  45. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia bulletin, 13(2), 261-276. https://doi.org/10.1093/schbul/13.2.261 DOI: https://doi.org/10.1093/schbul/13.2.261
  46. Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345-355. https://doi.org/10.1016/j.neuroimage.2013.11.001 DOI: https://doi.org/10.1016/j.neuroimage.2013.11.001
  47. Kong, L., Herold, C. J., Zollner, F., Salat, D. H., Lasser, M. M., Schmid, L. A., et al. (2014). Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: A matter of surface area, grey/white matter intensity contrast, and curvature. Psychiatry research. DOI: https://doi.org/10.1016/j.pscychresns.2014.12.004
  48. Kring, A. M., Gur, R. E., Blanchard, J. J., Horan, W. P., & Reise, S. P. (2013). The Clinical Assessment Interview for Negative Symptoms (CAINS): final development and validation. The American journal of psychiatry, 170(2), 165-172. https://doi.org/10.1176/appi.ajp.2012.12010109 DOI: https://doi.org/10.1176/appi.ajp.2012.12010109
  49. Lakis, N., Jimenez, J. A., Mancini-Marie, A., Stip, E., Lavoie, M. E., & Mendrek, A. (2011). Neural correlates of emotional recognition memory in schizophrenia: effects of valence and arousal. Psychiatry research, 194(3), 245-256. https://doi.org/10.1016/j.pscychresns.2011.05.010 DOI: https://doi.org/10.1016/j.pscychresns.2011.05.010
  50. Langdon, R., Ward, P. B., & Coltheart, M. (2010). Reasoning anomalies associated with delusions in schizophrenia. Schizophrenia bulletin, 36(2), 321-330. https://doi.org/10.1093/schbul/sbn069 DOI: https://doi.org/10.1093/schbul/sbn069
  51. Laroi, F., & Woodward, T. S. (2007). Hallucinations from a cognitive perspective. Harvard review of psychiatry, 15(3), 109-117. https://doi.org/10.1080/10673220701401993 DOI: https://doi.org/10.1080/10673220701401993
  52. Lei, W., Li, M., Deng, W., Zhou, Y., Ma, X., Wang, Q., et al. (2015). Sex-Specific Patterns of Aberrant Brain Function in First-Episode Treatment-Naive Patients with Schizophrenia. International journal of molecular sciences, 16(7), 16125-16143. https://doi.org/10.3390/ijms160716125 DOI: https://doi.org/10.3390/ijms160716125
  53. Luckhoff, H. K., Asmal, L., Scheffler, F., du Plessis, S., Chiliza, B., Smit, R., Phahladira, L., & Emsley, R. (2022). Sex and gender associations with indicators of neurodevelopmental compromise in schizophrenia spectrum disorders. Schizophrenia research, 243, 70–77. https://doi.org/10.1016/j.schres.2022.02.012 DOI: https://doi.org/10.1016/j.schres.2022.02.012
  54. Mancevski, B., Keilp, J., Kurzon, M., Berman, R. M., Ortakov, V., Harkavy-Friedman, J., et al. (2007). Lifelong course of positive and negative symptoms in chronically institutionalized patients with schizophrenia. Psychopathology, 40(2), 83-92. https://doi.org/10.1159/000098488 DOI: https://doi.org/10.1159/000098488
  55. Mancini-Marïe, A., Yoon, U., Jiminez, J., Fahim, C., Potvin, S., Grant, J. A., Laverdure-Dupont, D., Dubé, A. A., Betrisey, C., Rainville, P., Evans, A. C., Stip, E., & Mendrek, A. (2018). Sex, Age, Symptoms and Illness Duration and Their Relation with Gyrification Index in Schizophrenia. Clinical schizophrenia & related psychoses, 12(2), 57–68. https://doi.org/10.3371/CSRP.MAYO.070415 DOI: https://doi.org/10.3371/CSRP.MAYO.070415
  56. Martin, P., & Albers, M. (1995). Cerebellum and schizophrenia: a selective review. Schizophrenia bulletin, 21(2), 241-250. https://doi.org/10.1093/schbul/21.2.241 DOI: https://doi.org/10.1093/schbul/21.2.241
  57. Mazhari, S., & Moghadas Tabrizi, Y. (2014). Abnormalities of mental rotation of hands associated with speed of information processing and executive function in chronic schizophrenic patients. Psychiatry and clinical neurosciences, 68(6), 410-417. https://doi.org/10.1111/pcn.12148 DOI: https://doi.org/10.1111/pcn.12148
  58. Mendrek, A. (2007). Reversal of normal cerebral sexual dimorphism in schizophrenia: evidence and speculations. Medical hypotheses, 69(4), 896-902. https://doi.org/10.1016/j.mehy.2007.01.064 DOI: https://doi.org/10.1016/j.mehy.2007.01.064
  59. Neckelmann, G., Specht, K., Lund, A., Ersland, L., Smievoll, A. I., Neckelmann, D., et al. (2006). Mr morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. The International journal of neuroscience, 116(1), 9-23. https://doi.org/10.1080/00207450690962244 DOI: https://doi.org/10.1080/00207450690962244
  60. Nesvag, R., Saetre, P., Lawyer, G., Jonsson, E. G., & Agartz, I. (2009). The relationship between symptom severity and regional cortical and grey matter volumes in schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry, 33(3), 482-490. https://doi.org/10.1016/j.pnpbp.2009.01.013 DOI: https://doi.org/10.1016/j.pnpbp.2009.01.013
  61. Newell, K. A., Deng, C., & Huang, X. F. (2006). Increased cannabinoid receptor density in the posterior cingulate cortex in schizophrenia. Experimental brain research, 172(4), 556-560. DOI: https://doi.org/10.1007/s00221-006-0503-x
  62. Niu, L., Matsui, M., Zhou, S. Y., Hagino, H., Takahashi, T., Yoneyama, E., et al. (2004). Volume reduction of the amygdala in patients with schizophrenia: a magnetic resonance imaging study. Psychiatry research, 132(1), 41-51. https://doi.org/10.1007/s00221-006-0503-x DOI: https://doi.org/10.1016/j.pscychresns.2004.06.002
  63. O'Driscoll, C., Laing, J., & Mason, O. (2014). Cognitive emotion regulation strategies, alexithymia and dissociation in schizophrenia, a review and meta-analysis. Clinical psychology review, 34(6), 482-495. https://doi.org/10.1016/j.cpr.2014.07.002 DOI: https://doi.org/10.1016/j.cpr.2014.07.002
  64. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treatment. 2012;2012:916198. doi: 10.1155/2012/916198. DOI: https://doi.org/10.1155/2012/916198
  65. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4 DOI: https://doi.org/10.1016/0028-3932(71)90067-4
  66. Ring, N., Tantam, D., Montague, L., Newby, D., Black, D., & Morris, J. (1991). Gender differences in the incidence of definite schizophrenia and atypical psychosis--focus on negative symptoms of schizophrenia. Acta Psychiatr Scand, 84(6), 489-496. https://doi.org/10.1111/j.1600-0447.1991.tb03182.x DOI: https://doi.org/10.1111/j.1600-0447.1991.tb03182.x
  67. Rolland, B., Amad, A., Poulet, E., Bordet, R., Vignaud, A., Bation, R., Delmaire, C., Thomas, P., Cottencin, O., & Jardri, R. (2015). Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophrenia bulletin, 41(1), 291–299. https://doi.org/10.1093/schbul/sbu097 DOI: https://doi.org/10.1093/schbul/sbu097
  68. Salem, J. E., & Kring, A. M. (1998). The role of gender differences in the reduction of etiologic heterogeneity in schizophrenia. Clinical psychology review, 18(7), 795-819. https://doi.org/10.1016/s0272-7358(98)00008-7 DOI: https://doi.org/10.1016/S0272-7358(98)00008-7
  69. Sallet, P. C., Elkis, H., Alves, T. M., Oliveira, J. R., Sassi, E., Campi de Castro, C., et al. (2003). Reduced cortical folding in schizophrenia: an MRI morphometric study. The American journal of psychiatry, 160(9), 1606-1613. https://doi.org/10.1176/appi.ajp.160.9.1606 DOI: https://doi.org/10.1176/appi.ajp.160.9.1606
  70. Savadjiev, P., Whitford, T. J., Hough, M. E., Clemm von Hohenberg, C., Bouix, S., Westin, C. F., et al. (2014). Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia. Cerebral cortex, 24(5), 1389-1396. 1396. https://doi.org/10.1093/cercor/bhs422 DOI: https://doi.org/10.1093/cercor/bhs422
  71. Seal, M. L., Aleman, A., & McGuire, P. K. (2004). Compelling imagery, unanticipated speech and deceptive memory: neurocognitive models of auditory verbal hallucinations in schizophrenia. Cognitive neuropsychiatry, 9(1-2), 43-72. https://doi.org/10.1080/13546800344000156 DOI: https://doi.org/10.1080/13546800344000156
  72. Seeman, P. (2013). Schizophrenia and dopamine receptors. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 23(9), 999-1009. https://doi.org/10.1016/j.euroneuro.2013.06.005 DOI: https://doi.org/10.1016/j.euroneuro.2013.06.005
  73. Seidman, L. J., Goldstein, J. M., Goodman, J. M., Koren, D., Turner, W. M., Faraone, S. V., et al. (1997). Sex differences in olfactory identification and Wisconsin Card Sorting performance in schizophrenia: relationship to attention and verbal ability. Biological psychiatry, 42(2), 104-115. https://doi.org/10.1016/S0006-3223(96)00300-9 DOI: https://doi.org/10.1016/S0006-3223(96)00300-9
  74. Sepede, G., Spano, M. C., Lorusso, M., De Berardis, D., Salerno, R. M., Di Giannantonio, M., et al. (2014). Sustained attention in psychosis: Neuroimaging findings. World journal of radiology, 6(6), 261-273. https://doi.org/10.4329/wjr.v6.i6.261 DOI: https://doi.org/10.4329/wjr.v6.i6.261
  75. Smith, R., Chen, K., Baxter, L., Fort, C., & Lane, R. D. (2013). Antidepressant effects of sertraline associated with volume increases in dorsolateral prefrontal cortex. Journal of affective disorders, 146(3), 414-419. https://doi.org/10.1016/j.jad.2012.07.029 DOI: https://doi.org/10.1016/j.jad.2012.07.029
  76. Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1992). The Structured Clinical Interview for DSM-III-R (SCID). I: History, rationale, and description. Archives of general psychiatry, 49(8), 624-629. https://doi.org/10.1001/archpsyc.1992.01820080032005 DOI: https://doi.org/10.1001/archpsyc.1992.01820080032005
  77. Stip, E., Fahim, C., Mancini-Marie, A., Bentaleb, L. A., Mensour, B., Mendrek, A., et al. (2005). Restoration of frontal activation during a treatment with quetiapine: an fMRI study of blunted affect in schizophrenia. Progress in neuro-psychopharmacology & biological psychiatry, 29(1), 21-26. https://doi.org/10.1016/j.pnpbp.2004.08.015 DOI: https://doi.org/10.1016/j.pnpbp.2004.08.015
  78. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex; a journal devoted to the study of the nervous system and behavior, 46(7), 831-844. https://doi.org/10.1016/j.cortex.2009.11.008 DOI: https://doi.org/10.1016/j.cortex.2009.11.008
  79. Suazo, V., Diez, A., Montes, C., & Molina, V. (2014). Structural correlates of cognitive deficit and elevated gamma noise power in schizophrenia. Psychiatry and clinical neurosciences, 68(3), 206-215. https://doi.org/10.1111/pcn.12120 DOI: https://doi.org/10.1111/pcn.12120
  80. Sugimori, E., Mitchell, K. J., Raye, C. L., Greene, E. J., & Johnson, M. K. (2014). Brain mechanisms underlying reality monitoring for heard and imagined words. Psychological science, 25(2), 403-413. https://doi.org/10.1177/0956797613505776 DOI: https://doi.org/10.1177/0956797613505776
  81. Supekar, K., & Menon, V. (2012). Developmental maturation of dynamic causal control signals in higher-order cognition: a neurocognitive network model. PLoS computational biology, 8(2), e1002374. https://doi.org/10.1371/journal.pcbi.1002374 DOI: https://doi.org/10.1371/journal.pcbi.1002374
  82. Tagamets, M. A., Cortes, C. R., Griego, J. A., & Elvevag, B. (2014). Neural correlates of the relationship between discourse coherence and sensory monitoring in schizophrenia. Cortex; a journal devoted to the study of the nervous system and behavior, 55, 77-87. https://doi.org/10.1016/j.cortex.2013.06.011 DOI: https://doi.org/10.1016/j.cortex.2013.06.011
  83. Tracy, D. K., & Shergill, S. S. (2013). Mechanisms Underlying Auditory Hallucinations-Understanding Perception without Stimulus. Brain sciences, 3(2), 642-669. https://doi.org/10.3390/brainsci3020642 DOI: https://doi.org/10.3390/brainsci3020642
  84. Wendelken, C. (2014). Meta-analysis: how does posterior parietal cortex contribute to reasoning? Frontiers in human neuroscience, 8, 1042. https://doi.org/10.3389/fnhum.2014.01042 DOI: https://doi.org/10.3389/fnhum.2014.01042
  85. Wigman, J. T., Vollebergh, W. A., Raaijmakers, Q. A., Iedema, J., van Dorsselaer, S., Ormel, J., et al. (2011). The structure of the extended psychosis phenotype in early adolescence--a cross-sample replication. Schizophrenia bulletin, 37(4), 850-860. https://doi.org/10.1093/schbul/sbp154 DOI: https://doi.org/10.1093/schbul/sbp154
  86. Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. The Journal of clinical psychiatry, 64(6), 663-667. https://doi.org/10.4088/jcp.v64n0607 DOI: https://doi.org/10.4088/JCP.v64n0607
  87. Wotruba, D., Heekeren, K., Michels, L., Buechler, R., Simon, J. J., Theodoridou, A., et al. (2014). Symptom dimensions are associated with reward processing in unmedicated persons at risk for psychosis. Frontiers in behavioral neuroscience, 8, 382. https://doi.org/10.3389/fnbeh.2014.00382 DOI: https://doi.org/10.3389/fnbeh.2014.00382
  88. Zhao, J., Diao, J., Li, X., Yang, Y., Yao, Y., Shi, S., Yuan, X., Liu, H., & Zhang, K. (2022). Gender Differences in Psychiatric Symptoms and the Social Functioning of 610 Patients with Schizophrenia in Urban China: A 10-Year Follow-Up Study. Neuropsychiatric disease and treatment, 18, 1545–1551. https://doi.org/10.2147/NDT.S373923 DOI: https://doi.org/10.2147/NDT.S373923