Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Perspective

Vol. 1 No. 2 (2022): Cortica II : Remue-méninges de la santé mentale

PRESENCE D’UNE PRÉDISPOSITION : PREMIER ÉPISODE D’UNE SÉRIE DE HUIT ÉPISODES SUR LE CERVEAU

DOI
https://doi.org/10.26034/cortica.2022.3344
Soumise
September 12, 2022
Publié-e
2022-09-20

Résumé

L’objectif du modèle PRESENCE est de mettre en lumière les connaissances sur le développement du cerveau au service des neurosciences de l’éducation. PRESENCE combine une exploration approfondie de l'organisation du cerveau avec une revue de la littérature et perspective théorico-pratique sur la façon dont il permet l'émergence d'états mentaux complexes. Habilement tissé ensemble, le résultat est une image unique du cerveau qui est enracinée dans la morphologie et le fonctionnement cellulaire par la prédisposition génétique/épigénétique, l’élagage synaptique, la neuroplasticité et la neurogenèse puis mise en mouvement par la dynamique des réseaux de neurones et leur synchronisation en passant par la conscience et le libre arbitre. PRESENCE est un modèle sur lequel le CAS en neuroscience de l’éducation s’est basé. Le premier épisode de cette série de huit épisodes nous fait voyager au cœur de la prédisposition génétique et épigénétique. Les connexions sont établies selon un plan génétiquement programmé mais leur maintien et leur qualité peuvent être largement régulés par l’activité neuronale et donc l’expérience. En intervenant auprès du jeune il faut garder à l’esprit le fait qu’on intervient auprès d’une structure cérébrale génétiquement et épigénétiquement complexe et imprévisible ; que nos interventions ont les capacités d’interagir avec cette structure et la modifier pour le meilleur ou pour le pire. Les études dans le domaine ainsi que les réflexions de l’auteure présentées dans cette mini-revue de la littérature mettent en lumière le rôle de l’environnent dans le tissage des réseaux de neurones de l’enfant. Tout particulièrement, les recherches en neurosciences soulignent l’impact de l’environnement dans le développement de l’Être en construction.

Références

  1. Ainsworth, M. D. (1969). Object relations, dependency, and attachment: a theoretical review of the infant-mother relationship. Child Dev, 40(4), 969-1025. https://www.ncbi.nlm.nih.gov/pubmed/5360395
  2. Ainsworth, M. D. (1979). Infant--mother attachment. Am Psychol, 34(10), 932-937. https://doi.org/10.1037/0003-066x.34.10.932
  3. Ainsworth, M. D., & Bell, S. M. (1970). Attachment, exploration, and separation: illustrated by the behavior of one-year-olds in a strange situation. Child Dev, 41(1), 49-67. https://www.ncbi.nlm.nih.gov/pubmed/5490680
  4. Ainsworth, M. S. (1997). The personal origins of attachment theory. An interview with Mary Salter Ainsworth. Interview by Peter L. Rudnytsky. Psychoanal Study Child, 52, 386-405. https://www.ncbi.nlm.nih.gov/pubmed/9489476
  5. Albright, T. D., Jessell, T. M., Kandel, E. R., & Posner, M. I. (2000). Neural science: a century of progress and the mysteries that remain. Neuron, 25 Suppl, S1-55. https://doi.org/10.1016/s0896-6273(00)80912-5
  6. Alcaro, A., Huber, R., & Panksepp, J. (2007). Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. Brain Res Rev, 56(2), 283-321. https://doi.org/10.1016/j.brainresrev.2007.07.014
  7. Andersen, R. A., & Cui, H. (2009). Intention, action planning, and decision making in parietal-frontal circuits. Neuron, 63(5), 568-583. https://doi.org/10.1016/j.neuron.2009.08.028
  8. Atzil, S., Hendler, T., & Feldman, R. (2011). Specifying the Neurobiological Basis of Human Attachment: Brain, Hormones, and Behavior in Synchronous and Intrusive Mothers. Neuropsychopharmacology, 36(13), 2603-2615. https://doi.org/10.1038/npp.2011.172
  9. Barch, D. M., Belden, A. C., Tillman, R., Whalen, D., & Luby, J. L. (2018). Early Childhood Adverse Experiences, Inferior Frontal Gyrus Connectivity, and the Trajectory of Externalizing Psychopathology. J Am Acad Child Adolesc Psychiatry, 57(3), 183-190. https://doi.org/10.1016/j.jaac.2017.12.011
  10. Barnea-Goraly, N., Menon, V., Eckert, M., Tamm, L., Bammer, R., Karchemskiy, A., Dant, C. C., & Reiss, A. L. (2005). White matter development during childhood and adolescence: a cross-sectional diffusion tensor imaging study. Cereb Cortex, 15(12), 1848-1854. https://doi.org/10.1093/cercor/bhi062
  11. Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol, 4(3), 389-399. https://doi.org/10.1016/0959-4388(94)90101-5
  12. Bembich, S., Saksida, A., Mastromarino, S., Travan, L., Di Risio, G., Cont, G., & Demarini, S. (2022). Empathy at birth: Mother's cortex synchronizes with that of her newborn in pain. European Journal of Neuroscience, 55(6), 1519-1531. https://doi.org/10.1111/ejn.15641
  13. Berlucchi, G., & Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Exp Brain Res, 192(3), 307-319. https://doi.org/10.1007/s00221-008-1611-6
  14. Bethlehem, R. A. I., Seidlitz, J., White, S. R., Vogel, J. W., Anderson, K. M., Adamson, C., Adler, S., Alexopoulos, G. S., Anagnostou, E., Areces-Gonzalez, A., Astle, D. E., Auyeung, B., Ayub, M., Bae, J., Ball, G., Baron-Cohen, S., Beare, R., Bedford, S. A., Benegal, V., . . . Alexander-Bloch, A. F. (2022). Brain charts for the human lifespan. Nature, 604(7906), 525-533. https://doi.org/10.1038/s41586-022-04554-y
  15. Bohacek, J., Gapp, K., Saab, B. J., & Mansuy, I. M. (2013). Transgenerational epigenetic effects on brain functions. Biol Psychiatry, 73(4), 313-320. https://doi.org/10.1016/j.biopsych.2012.08.019
  16. Bowers, M. E., & Yehuda, R. (2016). Intergenerational Transmission of Stress in Humans. Neuropsychopharmacology, 41(1), 232-244. https://doi.org/10.1038/npp.2015.247
  17. Bowlby, J., & Robertson, J. (1953). A two-year old goes to hospital. Proc R Soc Med, 46(6), 425-427. https://www.ncbi.nlm.nih.gov/pubmed/13074181
  18. Brown, R. E., Bligh, T. W. B., & Garden, J. F. (2021). The Hebb Synapse Before Hebb: Theories of Synaptic Function in Learning and Memory Before , With a Discussion of the Long-Lost Synaptic Theory of William McDougall. Front Behav Neurosci, 15, 732195. https://doi.org/10.3389/fnbeh.2021.732195
  19. Bullock, T. H. (2006). How do brains evolve complexity? An essay. Int J Psychophysiol, 60(2), 106-109. https://doi.org/10.1016/j.ijpsycho.2005.12.005
  20. Bullock, T. H., Bennett, M. V., Johnston, D., Josephson, R., Marder, E., & Fields, R. D. (2005). Neuroscience. The neuron doctrine, redux. Science, 310(5749), 791-793. https://doi.org/10.1126/science.1114394
  21. Burnham, D. (1993). Visual recognition of mother by young infants: facilitation by speech. Perception, 22(10), 1133-1153. https://doi.org/10.1068/p221133
  22. Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M., & Meaney, M. J. (1998). Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci U S A, 95(9), 5335-5340. https://doi.org/10.1073/pnas.95.9.5335
  23. Caspi, A., & Moffitt, T. E. (2006). Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci, 7(7), 583-590. https://doi.org/10.1038/nrn1925
  24. Cater, M., & Majdic, G. (2022). How early maternal deprivation changes the brain and behavior? European Journal of Neuroscience, 55(9-10), 2058-2075. https://doi.org/10.1111/ejn.15238
  25. Chabert, C. (2021). Didier Anzieu: La psychanalyse, encore! International Journal of Psychoanalysis, 102(1), 117-128. https://doi.org/10.1080/00207578.2020.1816470
  26. Chang, L., Schwartz, D., Dodge, K. A., & McBride-Chang, C. (2003). Harsh parenting in relation to child emotion regulation and aggression. J Fam Psychol, 17(4), 598-606. https://doi.org/10.1037/0893-3200.17.4.598
  27. Changeux, J. P. (2001). Cajal on neurons, molecules, and consciousness. Ann N Y Acad Sci, 929, 147-151. https://doi.org/10.1111/j.1749-6632.2001.tb05713.x
  28. Charil, A., Laplante, D. P., Vaillancourt, C., & King, S. (2010). Prenatal stress and brain development. Brain Res Rev, 65(1), 56-79. https://doi.org/10.1016/j.brainresrev.2010.06.002
  29. Curley, J. P., & Champagne, F. A. (2016). Influence of maternal care on the developing brain: Mechanisms, temporal dynamics and sensitive periods. Front Neuroendocrinol, 40, 52-66. https://doi.org/10.1016/j.yfrne.2015.11.001
  30. de Castro, F. (2019). Cajal and the Spanish Neurological School: Neuroscience Would Have Been a Different Story Without Them. Front Cell Neurosci, 13, 187. https://doi.org/10.3389/fncel.2019.00187
  31. de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nat Rev Neurosci, 6(6), 463-475. https://doi.org/10.1038/nrn1683
  32. DeFelipe, J. (2002). Cortical interneurons: from Cajal to 2001. Prog Brain Res, 136, 215-238. https://doi.org/10.1016/s0079-6123(02)36019-9
  33. DeFelipe, J. (2006). Brain plasticity and mental processes: Cajal again. Nat Rev Neurosci, 7(10), 811-817. https://doi.org/10.1038/nrn2005
  34. DeFelipe, J., & Jones, E. G. (1992). Santiago Ramon y Cajal and methods in neurohistology. Trends Neurosci, 15(7), 237-246. https://doi.org/10.1016/0166-2236(92)90057-f
  35. Delgadillo, D., Boparai, S., Pressman, S. D., Goldstein, A., Bureau, J. F., Schmiedel, S., Backer, M., Broekman, B., Hian Tan, K., Chong, Y. S., Chen, H., Zalta, A. K., Meaney, M. J., Rifkin-Graboi, A., Tsotsi, S., & Borelli, J. L. (2021). Maternal expressions of positive emotion for children predicts children's respiratory sinus arrhythmia surrounding stress. Dev Psychobiol, 63(5), 1225-1240. https://doi.org/10.1002/dev.22082
  36. Delgado, M. R., Li, J., Schiller, D., & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond B Biol Sci, 363(1511), 3787-3800. https://doi.org/10.1098/rstb.2008.0161
  37. Delgado-Garcia, J. M. (2015). Cajal and the Conceptual Weakness of Neural Sciences. Front Neuroanat, 9, 128. https://doi.org/10.3389/fnana.2015.00128
  38. Dhabhar, F. S., Meaney, M. J., Sapolsky, R. M., & Spencer, R. L. (2020). Reflections on Bruce S. McEwen's contributions to stress neurobiology and so much more. Stress, 23(5), 499-508. https://doi.org/10.1080/10253890.2020.1806228
  39. Dias, B. G., & Ressler, K. J. (2014). Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci, 17(1), 89-96. https://doi.org/10.1038/nn.3594
  40. Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C., Burgund, E. D., Grimes, A. L., Schlaggar, B. L., & Petersen, S. E. (2006). A core system for the implementation of task sets. Neuron, 50(5), 799-812. https://doi.org/10.1016/j.neuron.2006.04.031
  41. Dubois-Comtois, K., Sabourin-Guardo, E., Achim, J., Lebel, A., & Terradas, M. M. (2019). Attachment and Mentalization in Child Psychiatry: A Window Into Children and Parents Functioning. Sante Mentale Au Quebec, 44(2), 195-217. ://WOS:000598172900013
  42. Endevelt-Shapira, Y., Djalovski, A., Dumas, G., & Feldman, R. (2021). Maternal chemosignals enhance infant-adult brain-to-brain synchrony. Sci Adv, 7(50), eabg6867. https://doi.org/10.1126/sciadv.abg6867
  43. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11), 1313-1317. https://doi.org/10.1038/3305
  44. Fahim, C. (2022). PRESENCE enracinée dans le cerveau par une prédisposition génétique et tissée par l’épigénétique [editorial]. Cortica, 1(1), 1-3. https://doi.org/https://doi.org/10.26034/cortica.2022.1779
  45. Fehlbaum, L. V., Borbas, R., Paul, K., Eickhoff, S. B., & Raschle, N. M. (2022). Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Social Cognitive and Affective Neuroscience, 17(4), 351-366. https://doi.org/10.1093/scan/nsab105
  46. Feldman, D. E., Nicoll, R. A., & Malenka, R. C. (1999). Synaptic plasticity at thalamocortical synapses in developing rat somatosensory cortex: LTP, LTD, and silent synapses. J Neurobiol, 41(1), 92-101. https://www.ncbi.nlm.nih.gov/pubmed/10504196
  47. Fitz-James, M. H., & Cavalli, G. (2022). Molecular mechanisms of transgenerational epigenetic inheritance. Nat Rev Genet, 23(6), 325-341. https://doi.org/10.1038/s41576-021-00438-5
  48. Flores, G., Alquicer, G., Silva-Gomez, A. B., Zaldivar, G., Stewart, J., Quirion, R., & Srivastava, L. K. (2005). Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience, 133(2), 463-470. https://doi.org/10.1016/j.neuroscience.2005.02.021
  49. Fonagy, P., & Bateman, A. W. (2016). Adversity, attachment, and mentalizing. Compr Psychiatry, 64, 59-66. https://doi.org/10.1016/j.comppsych.2015.11.006
  50. Fonagy, P., & Campbell, C. (2017). Bad Blood revisited: Attachment and psychoanalysis, 2015. Psyche-Zeitschrift Fur Psychoanalyse Und Ihre Anwendungen, 71(4), 275-305. https://doi.org/10.21706/ps-71-4-275
  51. Francis, D., Diorio, J., Liu, D., & Meaney, M. J. (1999). Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 286(5442), 1155-1158. https://doi.org/10.1126/science.286.5442.1155
  52. Franklin, T. B., Russig, H., Weiss, I. C., Graff, J., Linder, N., Michalon, A., Vizi, S., & Mansuy, I. M. (2010). Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry, 68(5), 408-415. https://doi.org/10.1016/j.biopsych.2010.05.036
  53. Freud, A. (1971). The infantile neurosis. Genetic and dynamic considerations. Psychoanal Study Child, 26, 79-90. https://doi.org/10.1080/00797308.1971.11822266
  54. Freund, N., Thompson, B. S., Denormandie, J., Vaccarro, K., & Andersen, S. L. (2013). Windows of vulnerability: maternal separation, age, and fluoxetine on adolescent depressive-like behavior in rats. Neuroscience, 249, 88-97. https://doi.org/10.1016/j.neuroscience.2013.06.066
  55. Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., & Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci, 17(5), 667-669. https://doi.org/10.1038/nn.3695
  56. Garcia-Lopez, P., Garcia-Marin, V., & Freire, M. (2007). The discovery of dendritic spines by Cajal in 1888 and its relevance in the present neuroscience. Prog Neurobiol, 83(2), 110-130. https://doi.org/10.1016/j.pneurobio.2007.06.002
  57. Garcia-Marin, V., Garcia-Lopez, P., & Freire, M. (2007). Cajal's contributions to glia research. Trends Neurosci, 30(9), 479-487. https://doi.org/10.1016/j.tins.2007.06.008
  58. Gee, D. G., Gabard-Durnam, L. J., Flannery, J., Goff, B., Humphreys, K. L., Telzer, E. H., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci U S A, 110(39), 15638-15643. https://doi.org/10.1073/pnas.1307893110
  59. Ghosh, S. K. (2020). Camillo Golgi (1843-1926): scientist extraordinaire and pioneer figure of modern neurology. Anat Cell Biol, 53(4), 385-392. https://doi.org/10.5115/acb.20.196
  60. Hane, A. A., Henderson, H. A., Reeb-Sutherland, B. C., & Fox, N. A. (2010). Ordinary variations in human maternal caregiving in infancy and biobehavioral development in early childhood: A follow-up study. Dev Psychobiol, 52(6), 558-567. https://doi.org/10.1002/dev.20461
  61. Harlow, H. F., Dodsworth, R. O., & Harlow, M. K. (1965). Total social isolation in monkeys. Proc Natl Acad Sci U S A, 54(1), 90-97. https://doi.org/10.1073/pnas.54.1.90
  62. He, Y., Kulasiri, D., & Samarasinghe, S. (2016). Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD). J Theor Biol, 403, 159-177. https://doi.org/10.1016/j.jtbi.2016.05.015
  63. Herringa, R. J., Burghy, C. A., Stodola, D. E., Fox, M. E., Davidson, R. J., & Essex, M. J. (2016). Enhanced prefrontal-amygdala connectivity following childhood adversity as a protective mechanism against internalizing in adolescence. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(4), 326-334. https://doi.org/10.1016/j.bpsc.2016.03.003
  64. Herrmann, Z. (2021). Supporting resilience in ECE: Strategies for teachers. He Kupu, 6(4), 20-31. ://WOS:000652235200005
  65. Hinshelwood, R. D. (1997). The elusive concept of 'internal objects' (1934-1943) - Its role in the formation of the Klein group. International Journal of Psycho-Analysis, 78, 877-897. ://WOS:000071235200002
  66. Hubel, D., & Wiesel, T. (2012). David Hubel and Torsten Wiesel. Neuron, 75(2), 182-184. https://doi.org/10.1016/j.neuron.2012.07.002
  67. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33 Suppl, 245-254. https://doi.org/10.1038/ng1089
  68. Jones, E. J., Venema, K., Lowy, R., Earl, R. K., & Webb, S. J. (2015). Developmental changes in infant brain activity during naturalistic social experiences. Dev Psychobiol, 57(7), 842-853. https://doi.org/10.1002/dev.21336
  69. Kandel, E. R. (1998). A new intellectual framework for psychiatry. Am J Psychiatry, 155(4), 457-469. https://doi.org/10.1176/ajp.155.4.457
  70. Kandel, E. R. (1999). Biology and the future of psychoanalysis: a new intellectual framework for psychiatry revisited. Am J Psychiatry, 156(4), 505-524. https://doi.org/10.1176/ajp.156.4.505
  71. Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science, 294(5544), 1030-1038. https://doi.org/10.1126/science.1067020
  72. Kandel, E. R. (2009). An introduction to the work of David Hubel and Torsten Wiesel. J Physiol, 587(Pt 12), 2733-2741. https://doi.org/10.1113/jphysiol.2009.170688
  73. Kar, P., Reynolds, J. E., Grohs, M. N., Bell, R. C., Jarman, M., Dewey, D., & Lebel, C. (2021). Association between breastfeeding during infancy and white matter microstructure in early childhood. Neuroimage, 236. https://doi.org/ARTN 118084
  74. 1016/j.neuroimage.2021.118084
  75. Kestering-Ferreira, E., Tractenberg, S. G., Lumertz, F. S., Orso, R., Creutzberg, K. C., Wearick-Silva, L. E., Viola, T. W., & Grassi-Oliveira, R. (2021). Long-term Effects of Maternal Separation on Anxiety-Like Behavior and Neuroendocrine Parameters in Adult Balb/c Mice. Chronic Stress (Thousand Oaks), 5, 24705470211067181. https://doi.org/10.1177/24705470211067181
  76. Kim, P., Leckman, J. F., Mayes, L. C., Newman, M. A., Feldman, R., & Swain, J. E. (2010). Perceived quality of maternal care in childhood and structure and function of mothers' brain. Dev Sci, 13(4), 662-673. https://doi.org/10.1111/j.1467-7687.2009.00923.x
  77. Kirsch, M., & Buchholz, M. B. (2020). On the Nature of the Mother-Infant Tie and Its Interaction With Freudian Drives. Front Psychol, 11, 317. https://doi.org/10.3389/fpsyg.2020.00317
  78. Kronenberg, G., & Klempin, F. (2020). Laying out the evidence for the persistence of neurogenesis in the adult human hippocampus. Eur Arch Psychiatry Clin Neurosci, 270(4), 497-498. https://doi.org/10.1007/s00406-019-01066-1
  79. Kullmann, D. M., Asztely, F., & Walker, M. C. (2000). The role of mammalian ionotropic receptors in synaptic plasticity: LTP, LTD and epilepsy. Cell Mol Life Sci, 57(11), 1551-1561. https://doi.org/10.1007/pl00000640
  80. Landry, C. D., Kandel, E. R., & Rajasethupathy, P. (2013). New mechanisms in memory storage: piRNAs and epigenetics. Trends Neurosci, 36(9), 535-542. https://doi.org/10.1016/j.tins.2013.05.004
  81. Leisman, G., Machado, C., Melillo, R., & Mualem, R. (2012). Intentionality and "free-will" from a neurodevelopmental perspective. Front Integr Neurosci, 6, 36. https://doi.org/10.3389/fnint.2012.00036
  82. Lester, B. M., Conradt, E., LaGasse, L. L., Tronick, E. Z., Padbury, J. F., & Marsit, C. J. (2018). Epigenetic Programming by Maternal Behavior in the Human Infant. Pediatrics, 142(4). https://doi.org/10.1542/peds.2017-1890
  83. Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277(5332), 1659-1662. https://doi.org/10.1126/science.277.5332.1659
  84. Luby, J. L., Belden, A., Harms, M. P., Tillman, R., & Barch, D. M. (2016). Preschool is a sensitive period for the influence of maternal support on the trajectory of hippocampal development. Proceedings of the National Academy of Sciences of the United States of America, 113(20), 5742-5747. https://doi.org/10.1073/pnas.1601443113
  85. Lucassen, N., Kok, R., Bakermans-Kranenburg, M. J., Van Ijzendoorn, M. H., Jaddoe, V. W., Hofman, A., Verhulst, F. C., Lambregtse-Van den Berg, M. P., & Tiemeier, H. (2015). Executive functions in early childhood: the role of maternal and paternal parenting practices. Br J Dev Psychol, 33(4), 489-505. https://doi.org/10.1111/bjdp.12112
  86. Lucassen, P. J., Naninck, E. F., van Goudoever, J. B., Fitzsimons, C., Joels, M., & Korosi, A. (2013). Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci, 36(11), 621-631. https://doi.org/10.1016/j.tins.2013.08.002
  87. Majcher-Maslanka, I., Solarz, A., & Chocyk, A. (2019). Maternal separation disturbs postnatal development of the medial prefrontal cortex and affects the number of neurons and glial cells in adolescent rats. Neuroscience, 423, 131-147. https://doi.org/10.1016/j.neuroscience.2019.10.033
  88. Malenka, R. C. (1994). Synaptic plasticity in the hippocampus: LTP and LTD. Cell, 78(4), 535-538. https://doi.org/10.1016/0092-8674(94)90517-7
  89. Mansuy, I. M., & Mohanna, S. (2011). Epigenetics and the human brain: where nurture meets nature. Cerebrum, 2011, 8. https://www.ncbi.nlm.nih.gov/pubmed/23447777
  90. McEwen, B. S. (1998). Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci, 840, 33-44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x
  91. Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci, 24, 1161-1192. https://doi.org/10.1146/annurev.neuro.24.1.1161
  92. Meaney, M. J., Aitken, D. H., Bodnoff, S. R., Iny, L. J., Tatarewicz, J. E., & Sapolsky, R. M. (2013). Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions. Behav Neurosci, 127(5), 637-641. https://doi.org/10.1037/a0034187
  93. Mejia-Chavez, S., Venebra-Munoz, A., Garcia-Garcia, F., Corona-Morales, A. A., & Orozco-Vargas, A. E. (2021). Maternal Separation Modifies the Activity of Social Processing Brain Nuclei Upon Social Novelty Exposure. Frontiers in Behavioral Neuroscience, 15. https://doi.org/ARTN 651263
  94. 3389/fnbeh.2021.651263
  95. Miljkovitch, R. L'attachement au cours de la vie : modèles internes opérants et narratifs.
  96. Monroy, E., Hernandez-Torres, E., & Flores, G. (2010). Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat, 40(2), 93-101. https://doi.org/10.1016/j.jchemneu.2010.05.005
  97. Narita, K., Takei, Y., Suda, M., Aoyama, Y., Uehara, T., Kosaka, H., Amanuma, M., Fukuda, M., & Mikuni, M. (2010). Relationship of parental bonding styles with gray matter volume of dorsolateral prefrontal cortex in young adults. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(4), 624-631. https://doi.org/10.1016/j.pnpbp.2010.02.025
  98. Nomikou, I., Leonardi, G., Radkowska, A., Raczaszek-Leonardi, J., & Rohlfing, K. J. (2017). Taking Up an Active Role: Emerging Participation in Early Mother-Infant Interaction during Peekaboo Routines. Front Psychol, 8, 1656. https://doi.org/10.3389/fpsyg.2017.01656
  99. Park, H. J., & Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science, 342(6158), 1238411. https://doi.org/10.1126/science.1238411
  100. Peters, A., Reisch, C., & Langemann, D. (2018). LTP or LTD? Modeling the Influence of Stress on Synaptic Plasticity. eNeuro, 5(1). https://doi.org/10.1523/ENEURO.0242-17.2018
  101. Roth, T. L., & Sweatt, J. D. (2011). Annual Research Review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry, 52(4), 398-408. https://doi.org/10.1111/j.1469-7610.2010.02282.x
  102. Sakai, J. (2020). Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proc Natl Acad Sci U S A, 117(28), 16096-16099. https://doi.org/10.1073/pnas.2010281117
  103. Sanchez, E. O., & Bangasser, D. A. (2022). The effects of early life stress on impulsivity. Neurosci Biobehav Rev, 137, 104638. https://doi.org/10.1016/j.neubiorev.2022.104638
  104. Sauvagnat, F., Wiss, M., & Clement, S. (2010). A historical perspective on the collaboration between psychoanalysis and neuroscience. Journal of Physiology-Paris, 104(6), 288-295. https://doi.org/10.1016/j.jphysparis.2010.10.001
  105. Schneider-Hassloff, H., Straube, B., Nuscheler, B., Wemken, G., & Kircher, T. (2015). Adult attachment style modulates neural responses in a mentalizing task. Neuroscience, 303, 462-473. https://doi.org/10.1016/j.neuroscience.2015.06.062
  106. Sharma, R., Frasch, M. G., Zelgert, C., Zimmermann, P., Fabre, B., Wilson, R., Waldenberger, M., MacDonald, J. W., Bammler, T. K., Lobmaier, S. M., & Antonelli, M. C. (2022). Maternal-fetal stress and DNA methylation signatures in neonatal saliva: an epigenome-wide association study. Clinical Epigenetics, 14(1). https://doi.org/ARTN 87
  107. 1186/s13148-022-01310-x
  108. Shepherd, G. M., Greer, C. A., Mazzarello, P., & Sassoe-Pognetto, M. (2011). The first images of nerve cells: Golgi on the olfactory bulb 1875. Brain Res Rev, 66(1-2), 92-105. https://doi.org/10.1016/j.brainresrev.2010.09.009
  109. Shimon-Raz, O., Salomon, R., Bloch, M., Romano, G. A., Yeshurun, Y., Yaniv, A. U., Zagoory-Sharon, O., & Feldman, R. (2021). Mother brain is wired for social moments. Elife, 10. https://doi.org/ARTN e59436
  110. 7554/eLife.59436
  111. Shipp, S. (2017). The functional logic of corticostriatal connections. Brain Struct Funct, 222(2), 669-706. https://doi.org/10.1007/s00429-016-1250-9
  112. Si, K., Lindquist, S., & Kandel, E. (2004). A possible epigenetic mechanism for the persistence of memory. Cold Spring Harb Symp Quant Biol, 69, 497-498. https://doi.org/10.1101/sqb.2004.69.497
  113. Siegelbaum, S. A., & Kandel, E. R. (1991). Learning-related synaptic plasticity: LTP and LTD. Curr Opin Neurobiol, 1(1), 113-120. https://doi.org/10.1016/0959-4388(91)90018-3
  114. Silveira, S., Boney, S., Tapert, S. F., & Mishra, J. (2021). Developing functional network connectivity of the dorsal anterior cingulate cortex mediates externalizing psychopathology in adolescents with child neglect. Dev Cogn Neurosci, 49, 100962. https://doi.org/10.1016/j.dcn.2021.100962
  115. Snyder, W., Uddin, L. Q., & Nomi, J. S. (2021). Dynamic functional connectivity profile of the salience network across the life span. Hum Brain Mapp, 42(14), 4740-4749. https://doi.org/10.1002/hbm.25581
  116. Soares, A. R., Gildawie, K. R., Honeycutt, J. A., & Brenhouse, H. C. (2020). Region-specific effects of maternal separation on oxidative stress accumulation in parvalbumin neurons of male and female rats. Behav Brain Res, 388, 112658. https://doi.org/10.1016/j.bbr.2020.112658
  117. Sowell, E. R., Thompson, P. M., Tessner, K. D., & Toga, A. W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. J Neurosci, 21(22), 8819-8829. https://www.ncbi.nlm.nih.gov/pubmed/11698594
  118. St-Cyr, S., & McGowan, P. O. (2015). Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Front Behav Neurosci, 9, 145. https://doi.org/10.3389/fnbeh.2015.00145
  119. Stanton, P. K. (1996). LTD, LTP, and the sliding threshold for long-term synaptic plasticity. Hippocampus, 6(1), 35-42. https://doi.org/10.1002/(SICI)1098-1063(1996)6:1<35::AID-HIPO7>3.0.CO;2-6
  120. Stephens, R. L., Langworthy, B. W., Short, S. J., Girault, J. B., Styner, M. A., & Gilmore, J. H. (2020). White Matter Development from Birth to 6 Years of Age: A Longitudinal Study. Cereb Cortex, 30(12), 6152-6168. https://doi.org/10.1093/cercor/bhaa170
  121. Sullivan, R. M. (2003). Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci, 1008, 122-131. https://doi.org/10.1196/annals.130.013
  122. Suomi, S. J. (1973). Surrogate rehabilitation of monkeys reared in total social isolation. J Child Psychol Psychiatry, 14(1), 71-77. https://doi.org/10.1111/j.1469-7610.1973.tb01866.x
  123. Sweatt, J. D. (2016). Neural plasticity and behavior - sixty years of conceptual advances. J Neurochem, 139 Suppl 2, 179-199. https://doi.org/10.1111/jnc.13580
  124. Szyf, M. (2019). The epigenetics of perinatal stress. Dialogues Clin Neurosci, 21(4), 369-378. https://doi.org/10.31887/DCNS.2019.21.4/mszyf
  125. Szyf, M. (2021). Perinatal stress and epigenetics. Handb Clin Neurol, 180, 125-148. https://doi.org/10.1016/B978-0-12-820107-7.00008-2
  126. Tanaka, C., Matsui, M., Uematsu, A., Noguchi, K., & Miyawaki, T. (2012). Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals. Dev Neurosci, 34(6), 477-487. https://doi.org/10.1159/000345152
  127. Telzer, E. H., Qu, Y., Goldenberg, D., Fuligni, A. J., Galvan, A., & Lieberman, M. D. (2014). Adolescents' emotional competence is associated with parents' neural sensitivity to emotions. Frontiers in Human Neuroscience, 8. https://doi.org/ARTN 558
  128. 3389/fnhum.2014.00558
  129. Thiery, T., Saive, A. L., Combrisson, E., Dehgan, A., Bastin, J., Kahane, P., Berthoz, A., Lachaux, J. P., & Jerbi, K. (2020). Decoding the neural dynamics of free choice in humans. PLoS Biol, 18(12), e3000864. https://doi.org/10.1371/journal.pbio.3000864
  130. Thomason, M. E., Brown, J. A., Dassanayake, M. T., Shastri, R., Marusak, H. A., Hernandez-Andrade, E., Yeo, L., Mody, S., Berman, S., Hassan, S. S., & Romero, R. (2014). Intrinsic functional brain architecture derived from graph theoretical analysis in the human fetus. PLoS One, 9(5), e94423. https://doi.org/10.1371/journal.pone.0094423
  131. Tracy, R. L., & Ainsworth, M. D. (1981). Maternal affectionate behavior and infant-mother attachment patterns. Child Dev, 52(4), 1341-1343. https://www.ncbi.nlm.nih.gov/pubmed/7318528
  132. Tronick, E. Z. (1989). Emotions and emotional communication in infants. Am Psychol, 44(2), 112-119. https://doi.org/10.1037//0003-066x.44.2.112
  133. Tsotsi, S., Broekman, B. F. P., Shek, L. P., Tan, K. H., Chong, Y. S., Chen, H., Meaney, M. J., & Rifkin-Graboi, A. E. (2019). Maternal Parenting Stress, Child Exuberance, and Preschoolers' Behavior Problems. Child Dev, 90(1), 136-146. https://doi.org/10.1111/cdev.13180
  134. Tsotsi, S., Broekman, B. F. P., Sim, L. W., Shek, L. P., Tan, K. H., Chong, Y. S., Qiu, A., Chen, H. Y., Meaney, M. J., & Rifkin-Graboi, A. (2019). Maternal Anxiety, Parenting Stress, and Preschoolers' Behavior Problems: The Role of Child Self-Regulation. J Dev Behav Pediatr, 40(9), 696-705. https://doi.org/10.1097/DBP.0000000000000737
  135. Turecki, G., & Meaney, M. J. (2016). Effects of the Social Environment and Stress on Glucocorticoid Receptor Gene Methylation: A Systematic Review. Biol Psychiatry, 79(2), 87-96. https://doi.org/10.1016/j.biopsych.2014.11.022
  136. Turner, B. M., Paradiso, S., Marvel, C. L., Pierson, R., Boles Ponto, L. L., Hichwa, R. D., & Robinson, R. G. (2007). The cerebellum and emotional experience. Neuropsychologia, 45(6), 1331-1341. https://doi.org/10.1016/j.neuropsychologia.2006.09.023
  137. van den Heuvel, M. I., & Thomason, M. E. (2016). Functional Connectivity of the Human Brain in Utero. Trends Cogn Sci, 20(12), 931-939. https://doi.org/10.1016/j.tics.2016.10.001
  138. Weaver, I. C. (2007). Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let's call the whole thing off. Epigenetics, 2(1), 22-28. https://doi.org/10.4161/epi.2.1.3881
  139. Weaver, I. C., Cervoni, N., Champagne, F. A., D'Alessio, A. C., Sharma, S., Seckl, J. R., Dymov, S., Szyf, M., & Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nat Neurosci, 7(8), 847-854. https://doi.org/10.1038/nn1276
  140. Winnicott, D. W. (1962). The theory of the parent-infant relationship. International Journal of Psychoanalysis, 43, 238-239. https://www.ncbi.nlm.nih.gov/pubmed/14001210
  141. Yehuda, R., Daskalakis, N. P., Lehrner, A., Desarnaud, F., Bader, H. N., Makotkine, I., Flory, J. D., Bierer, L. M., & Meaney, M. J. (2014). Influences of Maternal and Paternal PTSD on Epigenetic Regulation of the Glucocorticoid Receptor Gene in Holocaust Survivor Offspring. American Journal of Psychiatry, 171(8), 872-880. https://doi.org/10.1176/appi.ajp.2014.13121571