Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Articles

Vol. 1 No. 2 (2022): Cortica II : Remue-méninges de la santé mentale

Estimation du rythme circadien tout au long de la petite enfance : développement de la stabilité intra- et interquotidienne et amplitude relative

  • Déborah Maret
DOI
https://doi.org/10.26034/cortica.2022.3348
Soumise
September 13, 2022
Publié-e
2022-09-20

Résumé

Le lien entre qualité, durée et rythmicité du sommeil chez les enfants et maturation du cerveau a été plusieurs fois relevé. Il existe cependant un manque de consensus concernant les variables et la méthodologie utilisées pour différentes tranches d’âge. Nous avons conduit une étude longitudinale avec 136 enfants en bonne santé, âgés de 3, 6 et 12 mois, dans le but de refléter la maturation du rythme de veille-sommeil. Nous avons estimé la rythmicité circadienne avec des données actimétriques (Intradaily Variability, Interdaily Stability, Relative Amplitude et Circadian Function Index). Les résultats confirment des effets significatifs pour tous les âges. L’Intradaily Variability diminue avec l’âge, reflétant un sommeil continuellement moins fragmenté et moins de transitions veille—sommeil. L’Interdaily Stability et la Relative Amplitude augmentent avec l’âge, confirmant une synchronisation graduelle avec le cycle jour-nuit. Plus globalement, le Circadian Function Index regroupant ces trois variables et nous informant quant à la maturation du rythme veille-sommeil, a révélé que le rythme circadien s’améliore entre 3 et 12 mois. Ces résultats soulignent l’évolution du sommeil durant la première année de vie et offrent de nouvelles données normatives pour le rythme de veille-sommeil. Ces données pourront être utilisées pour détecter des développements anormaux du sommeil et ainsi permettre une intervention pour améliorer le développement.

Références

  1. Acebo, C., Sadeh, A., Seifer, R., Tzischinsky, O., Wolfson, A. R., Hafer, A., & Carskadon, M. A. (1999). Estimating sleep patterns with activity monitoring in children and adolescents : How many nights are necessary for reliable measures? Sleep, 22(1), 95‑103. https://doi.org/10.1093/sleep/22.1.95 DOI: https://doi.org/10.1093/sleep/22.1.95
  2. Ancoli-Israel, S., Cole, R., Alessi, C., Chambers, M., Moorcroft, W., & Pollak, C. P. (2003). The Role of Actigraphy in the Study of Sleep and Circadian Rhythms. Sleep, 26(3), 342‑392. https://doi.org/10.1093/sleep/26.3.342 DOI: https://doi.org/10.1093/sleep/26.3.342
  3. Arditi-Babchuk, H., Feldman, R., & Eidelman, A. I. (2009). Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant Behavior and Development, 32(1), 27‑32. https://doi.org/10.1016/j.infbeh.2008.09.001 DOI: https://doi.org/10.1016/j.infbeh.2008.09.001
  4. Bandín, C., Martinez-Nicolas, A., Ordovás, J. M., Madrid, J. A., & Garaulet, M. (2014). Circadian rhythmicity as a predictor of weight-loss effectiveness. International Journal of Obesity, 38(8), 1083‑1088. https://doi.org/10.1038/ijo.2013.211 DOI: https://doi.org/10.1038/ijo.2013.211
  5. Bathory, E., & Tomopoulos, S. (2017). Sleep Regulation, Physiology and Development, Sleep Duration and Patterns, and Sleep Hygiene in Infants, Toddlers, and Preschool-Age Children. Current Problems in Pediatric and Adolescent Health Care, 47(2), 29‑42. https://doi.org/10.1016/j.cppeds.2016.12.001 DOI: https://doi.org/10.1016/j.cppeds.2016.12.001
  6. Berger, A. M., Wielgus, K. K., Young-McCaughan, S., Fischer, P., Farr, L., & Lee, K. A. (2008). Methodological Challenges When Using Actigraphy in Research. Journal of Pain and Symptom Management, 36(2), 191‑199. https://doi.org/10.1016/j.jpainsymman.2007.10.008 DOI: https://doi.org/10.1016/j.jpainsymman.2007.10.008
  7. Blume, C., Santhi, N., & Schabus, M. (2016). ‘nparACT’ package for R : A free software tool for the non-parametric analysis of actigraphy data. MethodsX, 3, 430‑435. https://doi.org/10.1016/j.mex.2016.05.006 DOI: https://doi.org/10.1016/j.mex.2016.05.006
  8. Borbély, A. A. (1982). A Two Process Model of Sleep Regulation. Human Neurobiolgy, 1(3), 195‑204.
  9. Burnham, M. M., Goodlin-Jones, B. L., Gaylor, E. E., & Anders, T. F. (2002). Nighttime sleep-wake patterns and self-soothing from birth to one year of age : A longitudinal intervention study. Journal of Child Psychology and Psychiatry, 43(6), 713‑725. https://doi.org/10.1111/1469-7610.00076 DOI: https://doi.org/10.1111/1469-7610.00076
  10. Byars, K. C., Yolton, K., Rausch, J., Lanphear, B., & Beebe, D. W. (2012). Prevalence, Patterns, and Persistence of Sleep Problems in the First 3 Years of Life. Pediatrics, 129(2), e276‑e284. https://doi.org/10.1542/peds.2011-0372 DOI: https://doi.org/10.1542/peds.2011-0372
  11. Cook, F., Conway, L., Gartland, D., Giallo, R., Keys, E., & Brown, S. (2020). Profiles and Predictors of Infant Sleep Problems Across the First Year. Journal of Developmental & Behavioral Pediatrics, 41(2), 104‑116. https://doi.org/10.1097/DBP.0000000000000733 DOI: https://doi.org/10.1097/DBP.0000000000000733
  12. de Weerth, C., Zijl, R. H., & Buitelaar, J. K. (2003). Development of cortisol circadian rhythm in infancy. Early Human Development, 73(1), 39‑52. https://doi.org/10.1016/S0378-3782(03)00074-4 DOI: https://doi.org/10.1016/S0378-3782(03)00074-4
  13. Dias, C. C., Figueiredo, B., Rocha, M., & Field, T. (2018). Reference values and changes in infant sleep–wake behaviour during the first 12 months of life : A systematic review. Journal of Sleep Research, 27(5), e12654. https://doi.org/10.1111/jsr.12654 DOI: https://doi.org/10.1111/jsr.12654
  14. Fernandez, F., Nyhuis, C. C., Anand, P., Demara, B. I., Ruby, N. F., Spanò, G., Clark, C., & Edgin, J. O. (2017). Young children with Down syndrome show normal development of circadian rhythms, but poor sleep efficiency : A cross-sectional study across the first 60 months of life. Sleep Medicine, 33, 134‑144. https://doi.org/10.1016/j.sleep.2016.12.026 DOI: https://doi.org/10.1016/j.sleep.2016.12.026
  15. Glickman, G. (2010). Circadian rhythms and sleep in children with autism. Neuroscience & Biobehavioral Reviews, 34(5), 755‑768. https://doi.org/10.1016/j.neubiorev.2009.11.017 DOI: https://doi.org/10.1016/j.neubiorev.2009.11.017
  16. Gonçalves, B., Adamowicz, T., Louzada, F. M., Moreno, C. R., & Araujo, J. F. (2015). A fresh look at the use of nonparametric analysis in actimetry. Sleep Medicine Reviews, 20, 84‑91. https://doi.org/10.1016/j.smrv.2014.06.002 DOI: https://doi.org/10.1016/j.smrv.2014.06.002
  17. Heraghty, J. L., Hilliard, T. N., Henderson, A. J., & Fleming, P. J. (2008). The physiology of sleep in infants. Archives of Disease in Childhood, 93(11), 982‑985. https://doi.org/10.1136/adc.2006.113290 DOI: https://doi.org/10.1136/adc.2006.113290
  18. Iwata, S., Fujita, F., Kinoshita, M., Unno, M., Horinouchi, T., Morokuma, S., & Iwata, O. (2017). Dependence of nighttime sleep duration in one-month-old infants on alterations in natural and artificial photoperiod. Scientific Reports, 7(1), 1‑8. https://doi.org/10.1038/srep44749 DOI: https://doi.org/10.1038/srep44749
  19. Jenni, O. G., Deboer, T., & Achermann, P. (2006). Development of the 24-h rest-activity pattern in human infants. Infant Behavior and Development, 29(2), 143‑152. https://doi.org/10.1016/j.infbeh.2005.11.001 DOI: https://doi.org/10.1016/j.infbeh.2005.11.001
  20. Kikuchi, S., Nishihara, K., Horiuchi, S., & Eto, H. (2020). The influence of feeding method on a mother’s circadian rhythm and on the development of her infant’s circadian rest-activity rhythm. Early Human Development, 145, 105046. https://doi.org/10.1016/j.earlhumdev.2020.105046 DOI: https://doi.org/10.1016/j.earlhumdev.2020.105046
  21. Louis, J., Cannard, C., Bastuji, H., & Challamel, M.-J. (1997). Sleep Ontogenesis Revisited : A Longitudinal 24-Hour Home Polygraphic Study on 15 Normal Infants During the First Two Years of Life. Sleep, 20(5), 323‑333. https://doi.org/10.1093/sleep/20.5.323 DOI: https://doi.org/10.1093/sleep/20.5.323
  22. Lovos, A., Bottrill, K., Sakhon, S., Nyhuis, C., Egleson, E., Luongo, A., Murphy, M., Thurman, A. J., Abbeduto, L., Lee, N. R., Hughes, K., & Edgin, J. (2021). Circadian Sleep-Activity Rhythm across Ages in Down Syndrome. Brain Sciences, 11(11), 1403. https://doi.org/10.3390/brainsci11111403 DOI: https://doi.org/10.3390/brainsci11111403
  23. Luik, A. I., Zuurbier, L. A., Hofman, A., Van Someren, E. J. W., & Tiemeier, H. (2013). Stability and Fragmentation of the Activity Rhythm Across the Sleep-Wake Cycle : The Importance of Age, Lifestyle, and Mental Health. Chronobiology International, 30(10), 1223‑1230. https://doi.org/10.3109/07420528.2013.813528 DOI: https://doi.org/10.3109/07420528.2013.813528
  24. McGraw, K., Hoffmann, R., Harker, C., & Herman, J. H. (1999). The Development of Circadian Rhythms in a Human Infant. Sleep, 22(3), 303‑310. https://doi.org/10.1093/sleep/22.3.303 DOI: https://doi.org/10.1093/sleep/22.3.303
  25. Minors, D. S., & Waterhouse, J. M. (2013). Circadian Rhythms and the Human. Butterworth-Heinemann.
  26. Mirmiran, M., Maas, Y. G. H., & Ariagno, R. L. (2003). Development of fetal and neonatal sleep and circadian rhythms. Sleep Medicine Reviews, 7(4), 321‑334. https://doi.org/10.1053/smrv.2002.0243 DOI: https://doi.org/10.1053/smrv.2002.0243
  27. Nishihara, K., Horiuchi, S., Eto, H., & Uchida, S. (2002). The development of infants’ circadian rest–activity rhythm and mothers’ rhythm. Physiology & Behavior, 77(1), 91‑98. https://doi.org/10.1016/S0031-9384(02)00846-6 DOI: https://doi.org/10.1016/S0031-9384(02)00846-6
  28. Ortiz-Tudela, E., Martinez-Nicolas, A., Campos, M., Rol, M. Á., & Madrid, J. A. (2010). A New Integrated Variable Based on Thermometry, Actimetry and Body Position (TAP) to Evaluate Circadian System Status in Humans. PLOS Computational Biology, 6(11), e1000996. https://doi.org/10.1371/journal.pcbi.1000996 DOI: https://doi.org/10.1371/journal.pcbi.1000996
  29. Portaluppi, F., Smolensky, M. H., & Touitou, Y. (2010). Ethics and Methods for Biological Rhythm Research on Animals and Human Beings. Chronobiology International, 27(9‑10), 1911‑1929. https://doi.org/10.3109/07420528.2010.516381 DOI: https://doi.org/10.3109/07420528.2010.516381
  30. Rivkees, S. A. (2003). Developing Circadian Rhythmicity in Infants. Pediatrics, 112(2), 373‑381. https://doi.org/10.1542/peds.112.2.373 DOI: https://doi.org/10.1542/peds.112.2.373
  31. Rock, P., Goodwin, G., Harmer, C., & Wulff, K. (2014). Daily rest-activity patterns in the bipolar phenotype : A controlled actigraphy study. Chronobiology International, 31(2), 290‑296. https://doi.org/10.3109/07420528.2013.843542 DOI: https://doi.org/10.3109/07420528.2013.843542
  32. Rodriguez-Morilla, B., Estivill, E., Estivill-Domènech, C., Albares, J., Segarra, F., Correa, A., Campos, M., Rol, M. A., & Madrid, J. A. (2019). Application of Machine Learning Methods to Ambulatory Circadian Monitoring (ACM) for Discriminating Sleep and Circadian Disorders. Frontiers in Neuroscience, 13(1318). https://www.frontiersin.org/article/10.3389/fnins.2019.01318 DOI: https://doi.org/10.3389/fnins.2019.01318
  33. Sadeh, A. (2011). The role and validity of actigraphy in sleep medicine : An update. Sleep Medicine Reviews, 15(4), 259‑267. https://doi.org/10.1016/j.smrv.2010.10.001 DOI: https://doi.org/10.1016/j.smrv.2010.10.001
  34. Sadeh, A., Mindell, J. A., Luedtke, K., & Wiegand, B. (2009). Sleep and sleep ecology in the first 3 years : A web-based study. Journal of Sleep Research, 18(1), 60‑73. https://doi.org/10.1111/j.1365-2869.2008.00699.x DOI: https://doi.org/10.1111/j.1365-2869.2008.00699.x
  35. Schoch, S. F., Castro-Mejía, J. L., Krych, L., Leng, B., Kot, W., Kohler, M., Huber, R., Rogler, G., Biedermann, L., Walser, J. C., Nielsen, D. S., & Kurth, S. (2022). From Alpha Diversity to Zzz : Interactions among sleep, the brain, and gut microbiota in the first year of life. Progress in Neurobiology, 209, 102208. https://doi.org/10.1016/j.pneurobio.2021.102208 DOI: https://doi.org/10.1016/j.pneurobio.2021.102208
  36. Schoch, S. F., Huber, R., Kohler, M., & Kurth, S. (2020). Which are the Central Aspects of Infant Sleep? The Dynamics of Sleep Composites across Infancy. Sensors, 20(24), 7188‑7192. https://doi.org/10.3390/s20247188 DOI: https://doi.org/10.3390/s20247188
  37. Schoch, S. F., Kurth, S., & Werner, H. (2021). Actigraphy in sleep research with infants and young children : Current practices and future benefits of standardized reporting. Journal of Sleep Research, 30(3), e13134. https://doi.org/10.1111/jsr.13134 DOI: https://doi.org/10.1111/jsr.13134
  38. Sepa, A., Frodi, A., & Ludvigsson, J. (2004). Psychosocial correlates of parenting stress, lack of support and lack of confidence/security. Scandinavian Journal of Psychology, 45(2), 169‑179. https://doi.org/10.1111/j.1467-9450.2004.00392.x DOI: https://doi.org/10.1111/j.1467-9450.2004.00392.x
  39. Shimada, M., Takahashi, K., Segawa, M., Higurashi, M., Samejim, M., & Horiuchi, K. (1999). Emerging and entraining patterns of the sleep-wake rhythm in preterm and term infants. Brain & Development, 21(7), 468‑473. https://doi.org/10.1016/s0387-7604(99)00054-6 DOI: https://doi.org/10.1016/S0387-7604(99)00054-6
  40. Tarullo, A. R., Balsam, P. D., & Fifer, W. P. (2011). Sleep and infant learning. Infant and Child Development, 20(1), 35‑46. https://doi.org/10.1002/icd.685 DOI: https://doi.org/10.1002/icd.685
  41. Tham, E. K., Schneider, N., & Broekman, B. F. (2017). Infant sleep and its relation with cognition and growth : A narrative review. Nature and Science of Sleep, 9, 135‑149. https://doi.org/10.2147/NSS.S125992 DOI: https://doi.org/10.2147/NSS.S125992
  42. Thomas, K. A., Burr, R. L., & Spieker, S. (2015). Maternal and infant activity : Analytic approaches for the study of circadian rhythm. Infant Behavior and Development, 41, 80‑87. https://doi.org/10.1016/j.infbeh.2015.08.002 DOI: https://doi.org/10.1016/j.infbeh.2015.08.002
  43. Tikotzky, L., & Sadeh, A. (2001). Sleep Patterns and Sleep Disruptions in Kindergarten Children. Journal of Clinical Child & Adolescent Psychology, 30(4), 581‑591. https://doi.org/10.1207/S15374424JCCP3004_13 DOI: https://doi.org/10.1207/S15374424JCCP3004_13
  44. Tikotzky, L., & Sadeh, A. (2009). Maternal Sleep-Related Cognitions and Infant Sleep : A Longitudinal Study From Pregnancy Through the 1st Year. Child Development, 80(3), 860‑874. https://doi.org/10.1111/j.1467-8624.2009.01302.x DOI: https://doi.org/10.1111/j.1467-8624.2009.01302.x
  45. Tononi, G., & Cirelli, C. (2012). Time to Be SHY? Some Comments on Sleep and Synaptic Homeostasis. Neural Plasticity, 2012, e415250. https://doi.org/10.1155/2012/415250 DOI: https://doi.org/10.1155/2012/415250
  46. Van Someren, E. J. W. (2011). Chapter 4—Actigraphic monitoring of sleep and circadian rhythms. In P. Montagna & S. Chokroverty (Éds.), Handbook of Clinical Neurology (Vol. 98, p. 55‑63). Elsevier. https://doi.org/10.1016/B978-0-444-52006-7.00004-6 DOI: https://doi.org/10.1016/B978-0-444-52006-7.00004-6
  47. Van Someren, E. J. W., Swaab, D. F., Colenda, C. C., Cohen, W., McCall, W. V., & Rosenquist, P. B. (1999). Bright Light Therapy : Improved Sensitivity to Its Effects on Rest-Activity Rhythms in Alzheimer Patients by Application of Nonparametric Methods. Chronobiology International, 16(4), 505‑518. https://doi.org/10.3109/07420529908998724 DOI: https://doi.org/10.3109/07420529908998724
  48. Witting, W., Kwa, I. H., Eikelenboom, P., Mirmiran, M., & Swaab, D. F. (1990). Alterations in the circadian rest-activity rhythm in aging and Alzheimer’s disease. Biological Psychiatry, 27(6), 563‑572. https://doi.org/10.1016/0006-3223(90)90523-5 DOI: https://doi.org/10.1016/0006-3223(90)90523-5
  49. Zornoza-Moreno, M., Fuentes-Hernández, S., Prieto-Sánchez, M. T., Blanco, J. E., Pagán, A., Rol, M.-Á., Parrilla, J. J., Madrid, J. A., Sánchez-Solis, M., & Larqué, E. (2013). Influence of gestational diabetes on circadian rhythms of children and their association with fetal adiposity. Diabetes/Metabolism Research and Reviews, 29(6), 483‑491. https://doi.org/10.1002/dmrr.2417 DOI: https://doi.org/10.1002/dmrr.2417
  50. Zornoza-Moreno, M., Fuentes-Hernández, S., Sánchez-Solis, M., Rol, M. Á., Larqué, E., & Madrid, and J. A. (2011). Assessment of Circadian Rhythms of Both Skin Temperature and Motor Activity in Infants During the First 6 Months of Life. Chronobiology International, 28(4), 330‑337. https://doi.org/10.3109/07420528.2011.565895 DOI: https://doi.org/10.3109/07420528.2011.565895