Skip to main navigation menu Skip to main content Skip to site footer

Cortica Journal club

Vol. 2 No. 2 (2023): OPEN SCIENCE : Accès aux savoirs scientifiques auprès des professionnels de santé

How do human brains encode their own learning and memory processes, and how does the topology of a person's wider social network show similar neural patterns to those of their friends and communities?

DOI
https://doi.org/10.26034/cortica.2023.4208
Submitted
September 5, 2023
Published
2023-09-19

Abstract

This Cortica Journal Club explores the underlying foundations of learning and memory, illuminating how these processes reflect and interact with the topology of broader social networks. Indeed, human brains instinctively assess the position of individuals within their social network. Similarities in brain responses are correlated with the strength of friendship bonds, while understanding the overall network structure reflects the assimilation of both social and cognitive topologies. In the future, the combination of experimental and computational methods could explore the evolution of neural networks alongside the ability to understand large groups, to shed light on their diverse roles and collective effects. Identifying shared neural networks, acting as guides for understanding both social and non-social structures, could greatly enrich our understanding of collective cognition and cultural evolution.

References

  1. Berthoz, A. (2012). Bases neurales de la décision. Une approche de neurosciences cognitives. Annales Médico-psychologiques, revue psychiatrique, 170(2), 115‑119. https://doi.org/10.1016/j.amp.2012.01.002
  2. Bueno, D. (2019). Genetics and Learning : How the Genes Influence Educational Attainment. Frontiers in Psychology, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01622
  3. Centola, D. (2010). The Spread of Behavior in an Online Social Network Experiment. Science (New York, N.Y.), 329, 1194‑1197. https://doi.org/10.1126/science.1185231
  4. Centola, D. (2011). An Experimental Study of Homophily in the Adoption of Health Behavior. Science (New York, N.Y.), 334, 1269‑1272. https://doi.org/10.1126/science.1207055
  5. Coman, A., Momennejad, I., Drach, R. D., & Geana, A. (2016). Mnemonic convergence in social networks : The emergent properties of cognition at a collective level. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 8171‑8176. https://doi.org/10.1073/pnas.1525569113
  6. Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets : Reasoning about a Highly Connected World. Cambridge University Press. https://doi.org/10.1017/CBO9780511761942
  7. Feldman, L. (2019). Survival : The first 3.8 billion years. Nature, 572(7770), 437‑438. https://doi.org/10.1038/d41586-019-02475-x
  8. Harand, C., Bertran, F., Doidy, F., Guénolé, F., Desgranges, B., Eustache, F., & Rauchs, G. (2012). How aging affects sleep-dependent memory consolidation? Frontiers in Neurology, 3, 8. https://doi.org/10.3389/fneur.2012.00008
  9. Lesburgueres, E. (2009). Implication fonctionnelle de l’interface hippocampo-corticale dans le processus de consolidation systémique de la mémoire associative non spatiale chez le rat : Contribution du mécanisme d’étiquetage neuronal [Thèse de doctorat, Bordeaux 1]. https://www.theses.fr/2009BOR13982
  10. Luhmann, C., & Rajaram, S. (2013). Mnemonic Diffusion : An Agent-Based Modeling Investigation of Collective Memory. Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35). https://escholarship.org/uc/item/2v41f1j3
  11. Momennejad, I. (2021). Collective minds : Social network topology shapes collective cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1843), 20200315. https://doi.org/10.1098/rstb.2020.0315
  12. Momennejad, I., Sinclair, S., & Cikara, M. (2019). Computational Justice : Simulating Structural Bias and Interventions. https://doi.org/10.1101/776211
  13. Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2017). Spontaneous neural encoding of social network position. Nature Human Behaviour, 1(5), 0072. https://doi.org/10.1038/s41562-017-0072
  14. Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9(1), 332. https://doi.org/10.1038/s41467-017-02722-7
  15. Raven, F., Van der Zee, E., Meerlo, P., & Havekes, R. (2017). The role of sleep in regulating structural plasticity and synaptic strength : Implications for memory and cognitive function. Sleep Medicine Reviews, 39. https://doi.org/10.1016/j.smrv.2017.05.002
  16. Roy, D. S., Park, Y.-G., Kim, M. E., Zhang, Y., Ogawa, S. K., DiNapoli, N., Gu, X., Cho, J. H., Choi, H., Kamentsky, L., Martin, J., Mosto, O., Aida, T., Chung, K., & Tonegawa, S. (2022). Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-29384-4
  17. Schapiro, A., Turk-Browne, N., Botvinick, M., & Norman, K. (2017). Complementary learning systems within the hippocampus : A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of The Royal Society B Biological Sciences, 372. https://doi.org/10.1098/rstb.2016.0049
  18. Sievers, B., Welker, C., Hasson, U., Kleinbaum, A., & Wheatley, T. (2020). How consensus-building conversation changes our minds and aligns our brains. https://doi.org/10.31234/osf.io/562z7
  19. Squire, L. R. (2009). Memory and Brain Systems : 1969–2009. Journal of Neuroscience, 29(41), 12711‑12716. https://doi.org/10.1523/JNEUROSCI.3575-09.2009
  20. Tallman, C. W., Clark, R. E., & Smith, C. N. (2022). Human brain activity and functional connectivity as memories age from one hour to one month. Cognitive Neuroscience, 13(3‑4), 115‑133. https://doi.org/10.1080/17588928.2021.2021164
  21. Vlasceanu, M., Morais, M. J., & Coman, A. (2021). Network structure impacts the synchronization of collective beliefs. Journal of Cognition and Culture, 21(5), 431‑448. https://doi.org/10.1163/15685373-12340120
  22. Wein, H. (2015, mai 15). Mental Replay in Learning and Memory. National Institutes of Health (NIH). https://www.nih.gov/news-events/nih-research-matters/mental-replay-learning-memory
  23. Wheeler, A. L., Teixeira, C. M., Wang, A. H., Xiong, X., Kovacevic, N., Lerch, J. P., McIntosh, A. R., Parkinson, J., & Frankland, P. W. (2013). Identification of a functional connectome for long-term fear memory in mice. PLoS Computational Biology, 9(1), e1002853. https://doi.org/10.1371/journal.pcbi.1002853
  24. Wirt, R. A., & Hyman, J. M. (2019). ACC Theta Improves Hippocampal Contextual Processing during Remote Recall. Cell Reports, 27(8), 2313-2327.e4. https://doi.org/10.1016/j.celrep.2019.04.080