Cortica Journal club
Vol. 2 No. 2 (2023): OPEN SCIENCE : Accès aux savoirs scientifiques auprès des professionnels de santé
How do human brains encode their own learning and memory processes, and how does the topology of a person's wider social network show similar neural patterns to those of their friends and communities?
Abstract
This Cortica Journal Club explores the underlying foundations of learning and memory, illuminating how these processes reflect and interact with the topology of broader social networks. Indeed, human brains instinctively assess the position of individuals within their social network. Similarities in brain responses are correlated with the strength of friendship bonds, while understanding the overall network structure reflects the assimilation of both social and cognitive topologies. In the future, the combination of experimental and computational methods could explore the evolution of neural networks alongside the ability to understand large groups, to shed light on their diverse roles and collective effects. Identifying shared neural networks, acting as guides for understanding both social and non-social structures, could greatly enrich our understanding of collective cognition and cultural evolution.
References
- Berthoz, A. (2012). Bases neurales de la décision. Une approche de neurosciences cognitives. Annales Médico-psychologiques, revue psychiatrique, 170(2), 115‑119. https://doi.org/10.1016/j.amp.2012.01.002
- Bueno, D. (2019). Genetics and Learning : How the Genes Influence Educational Attainment. Frontiers in Psychology, 10. https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01622
- Centola, D. (2010). The Spread of Behavior in an Online Social Network Experiment. Science (New York, N.Y.), 329, 1194‑1197. https://doi.org/10.1126/science.1185231
- Centola, D. (2011). An Experimental Study of Homophily in the Adoption of Health Behavior. Science (New York, N.Y.), 334, 1269‑1272. https://doi.org/10.1126/science.1207055
- Coman, A., Momennejad, I., Drach, R. D., & Geana, A. (2016). Mnemonic convergence in social networks : The emergent properties of cognition at a collective level. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 8171‑8176. https://doi.org/10.1073/pnas.1525569113
- Easley, D., & Kleinberg, J. (2010). Networks, Crowds, and Markets : Reasoning about a Highly Connected World. Cambridge University Press. https://doi.org/10.1017/CBO9780511761942
- Feldman, L. (2019). Survival : The first 3.8 billion years. Nature, 572(7770), 437‑438. https://doi.org/10.1038/d41586-019-02475-x
- Harand, C., Bertran, F., Doidy, F., Guénolé, F., Desgranges, B., Eustache, F., & Rauchs, G. (2012). How aging affects sleep-dependent memory consolidation? Frontiers in Neurology, 3, 8. https://doi.org/10.3389/fneur.2012.00008
- Lesburgueres, E. (2009). Implication fonctionnelle de l’interface hippocampo-corticale dans le processus de consolidation systémique de la mémoire associative non spatiale chez le rat : Contribution du mécanisme d’étiquetage neuronal [Thèse de doctorat, Bordeaux 1]. https://www.theses.fr/2009BOR13982
- Luhmann, C., & Rajaram, S. (2013). Mnemonic Diffusion : An Agent-Based Modeling Investigation of Collective Memory. Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35). https://escholarship.org/uc/item/2v41f1j3
- Momennejad, I. (2021). Collective minds : Social network topology shapes collective cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1843), 20200315. https://doi.org/10.1098/rstb.2020.0315
- Momennejad, I., Sinclair, S., & Cikara, M. (2019). Computational Justice : Simulating Structural Bias and Interventions. https://doi.org/10.1101/776211
- Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2017). Spontaneous neural encoding of social network position. Nature Human Behaviour, 1(5), 0072. https://doi.org/10.1038/s41562-017-0072
- Parkinson, C., Kleinbaum, A. M., & Wheatley, T. (2018). Similar neural responses predict friendship. Nature Communications, 9(1), 332. https://doi.org/10.1038/s41467-017-02722-7
- Raven, F., Van der Zee, E., Meerlo, P., & Havekes, R. (2017). The role of sleep in regulating structural plasticity and synaptic strength : Implications for memory and cognitive function. Sleep Medicine Reviews, 39. https://doi.org/10.1016/j.smrv.2017.05.002
- Roy, D. S., Park, Y.-G., Kim, M. E., Zhang, Y., Ogawa, S. K., DiNapoli, N., Gu, X., Cho, J. H., Choi, H., Kamentsky, L., Martin, J., Mosto, O., Aida, T., Chung, K., & Tonegawa, S. (2022). Brain-wide mapping reveals that engrams for a single memory are distributed across multiple brain regions. Nature Communications, 13(1), Article 1. https://doi.org/10.1038/s41467-022-29384-4
- Schapiro, A., Turk-Browne, N., Botvinick, M., & Norman, K. (2017). Complementary learning systems within the hippocampus : A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of The Royal Society B Biological Sciences, 372. https://doi.org/10.1098/rstb.2016.0049
- Sievers, B., Welker, C., Hasson, U., Kleinbaum, A., & Wheatley, T. (2020). How consensus-building conversation changes our minds and aligns our brains. https://doi.org/10.31234/osf.io/562z7
- Squire, L. R. (2009). Memory and Brain Systems : 1969–2009. Journal of Neuroscience, 29(41), 12711‑12716. https://doi.org/10.1523/JNEUROSCI.3575-09.2009
- Tallman, C. W., Clark, R. E., & Smith, C. N. (2022). Human brain activity and functional connectivity as memories age from one hour to one month. Cognitive Neuroscience, 13(3‑4), 115‑133. https://doi.org/10.1080/17588928.2021.2021164
- Vlasceanu, M., Morais, M. J., & Coman, A. (2021). Network structure impacts the synchronization of collective beliefs. Journal of Cognition and Culture, 21(5), 431‑448. https://doi.org/10.1163/15685373-12340120
- Wein, H. (2015, mai 15). Mental Replay in Learning and Memory. National Institutes of Health (NIH). https://www.nih.gov/news-events/nih-research-matters/mental-replay-learning-memory
- Wheeler, A. L., Teixeira, C. M., Wang, A. H., Xiong, X., Kovacevic, N., Lerch, J. P., McIntosh, A. R., Parkinson, J., & Frankland, P. W. (2013). Identification of a functional connectome for long-term fear memory in mice. PLoS Computational Biology, 9(1), e1002853. https://doi.org/10.1371/journal.pcbi.1002853
- Wirt, R. A., & Hyman, J. M. (2019). ACC Theta Improves Hippocampal Contextual Processing during Remote Recall. Cell Reports, 27(8), 2313-2327.e4. https://doi.org/10.1016/j.celrep.2019.04.080