Skip to main navigation menu Skip to main content Skip to site footer

Editorial

Vol. 3 No. 2 (2024): La multidisciplinarité de la psychologie de la santé & des neurosciences

L'Elagage synaptique

  • Cherine Fahim Fahmy
DOI
https://doi.org/10.26034/cortica.2024.6091
Submitted
September 18, 2024
Published
2024-09-21

Abstract

Hebb (1949) proposed that synaptic strength between two neurons increases with simultaneous activity and that neuronal connections persist if they are used. This principle, known as synaptic pruning, is essential for brain development. Although the basic wiring of the brain is genetically predetermined, its adjustment over the course of life is influenced by experience. Brain maturation occurs primarily in response to environmental stimuli. The connections between neurons, or synapses, house our learning, experiences, and memories. Synapses continuously evolve: some are strengthened, while others weaken or disappear based on their usage.The first synaptic pruning during childhood is crucial for proper neuronal functioning. It eliminates unused synapses to reinforce those that are frequently used. This process continues throughout childhood and adolescence, playing a key role in neuroplasticity. During adolescence, the brain undergoes major reorganization, marked by a second synaptic pruning. This process involves eliminating less-used synapses to allow the development of more functional ones. Synaptic pruning at this stage is influenced by sex and stress hormones, which alter brain structure and connectivity, particularly in areas involved in decision-making, emotional regulation, and social cognition.

 

Toxic stress, without adequate support, can harm brain development. Identity is built through autobiographical memory, influenced by early relationships and the quality of bonds between adults and children. These relationships affect emotional regulation, autobiographical coherence, and executive functions, which are essential for a sense of identity and continuity. Early childhood experiences lay the foundation for brain architecture, essential for learning and well-being. Moderate stress, in a supportive environment, prepares children to face future challenges. In conclusion, synaptic pruning is fundamental for cognitive and socio-emotional development. It strengthens useful neuronal connections and eliminates unnecessary ones, thus influencing adaptability and resilience throughout life. During adolescence, this process is particularly important for refining neuronal networks in response to the social and emotional challenges characteristic of this period. Synaptic pruning sorts information to guide thought and action, fostering cognitive and behavioral adaptation. During this critical period, unused neuronal connections are eliminated, while actively used ones are strengthened, establishing the foundation for cognitive and socio-emotional skills throughout life. In conclusion, synaptic pruning is fundamental for the development of identity and thought, shaping neuronal networks based on experiences and social interactions, and influencing the capacity for adaptation and resilience in facing life's challenges.

References

  1. Addis, D. R., & Schacter, D. L. (2012). The hippocampus and imagining the future: where do we stand?. Frontiers in human neuroscience, 5, 173. https://doi.org/10.3389/fnhum.2011.00173
  2. Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., Sandhu, R., & Sharma, S. (2013). Maturation of the adolescent brain. Neuropsychiatric disease and treatment, 9, 449–461. https://doi.org/10.2147/NDT.S39776
  3. Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental cognitive neuroscience, 15, 11–25. https://doi.org/10.1016/j.dcn.2015.07.006
  4. Bateman, A. , & Fonagy, P. (2016). Mentalization‐based treatment for personality disorders: A practical guide. Oxford University Press.
  5. Fonagy, P., & Bateman, A. W. (2016). Adversity, attachment, and mentalizing. Comprehensive psychiatry, 64, 59–66. https://doi.org/10.1016/j.comppsych.2015.11.006
  6. Bear, M. F., & Malenka, R. C. (1994). Synaptic plasticity: LTP and LTD. Current opinion in neurobiology, 4(3), 389–399. https://doi.org/10.1016/0959-4388(94)90101-5
  7. Bi , G., & Poo , M. (2001). Synaptic modification by correlated activity: Hebb's postulate revisited. Annual review of neuroscience, 24, 139–166. https://doi.org/10.1146/annurev.neuro.24.1.139
  8. Blüml, S., Wisnowski, J. L., Nelson, M. D., Jr, Paquette, L., Gilles, F. H., Kinney, H. C., & Panigrahy, A. (2013). Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cerebral cortex (New York, N.Y. : 1991), 23(12), 2944–2955. https://doi.org/10.1093/cercor/bhs283
  9. Boyes, A., McLoughlin, L. T., Anderson, H., Schwenn, P., Shan, Z., Gatt, J. M., Lagopoulos, J., & Hermens, D. F. (2022). Basal ganglia correlates of wellbeing in early adolescence. Brain research, 1774, 147710. https://doi.org/10.1016/j.brainres.2021.147710
  10. Center on the Developing Child (2015). The Science of Resilience (InBrief). Retrieved from www.developingchild.harvard.edu.
  11. Chechik, G., Meilijson, I., & Ruppin, E. (1999). Neuronal regulation: A mechanism for synaptic pruning during brain maturation. Neural computation, 11(8), 2061–2080. https://doi.org/10.1162/089976699300016089
  12. Damasio A. R. (1996). The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 351(1346), 1413–1420. https://doi.org/10.1098/rstb.1996.0125
  13. Dayananda, K. K., Ahmed, S., Wang, D., Polis, B., Islam, R., & Kaffman, A. (2023). Early life stress impairs synaptic pruning in the developing hippocampus. Brain, behavior, and immunity, 107, 16–31. https://doi.org/10.1016/j.bbi.2022.09.014
  14. Doyen, C., Contejean, Y., Risler, V., Asch, M., Amado, I., Launay, C., Redon, P.deB., Burnouf, I., & Kaye, K. (2015). Thérapie par remédiation cognitive chez les enfants : données de la littérature et application clinique dans un service de psychiatrie de l'enfant et de l'adolescent [Cognitive remediation therapy for children: literature data and clinical application in a child and adolescent psychiatry department]. Archives de pediatrie : organe officiel de la Societe francaise de pediatrie, 22(4), 418–426. https://doi.org/10.1016/j.arcped.2015.01.012
  15. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience, 2(10), 861–863. https://doi.org/10.1038/13158
  16. Gómez, C. M., Barriga-Paulino, C. I., Rodríguez-Martínez, E. I., Rojas-Benjumea, M. Á., Arjona, A., & Gómez-González, J. (2018). The neurophysiology of working memory development: from childhood to adolescence and young adulthood. Reviews in the neurosciences, 29(3), 261–282. https://doi.org/10.1515/revneuro-2017-0073
  17. Epstein H. T. (1986). Stages in human brain development. Brain research, 395(1), 114–119. https://doi.org/10.1016/s0006-8993(86)80017-8
  18. Fehlbaum, L. V., Borbás, R., Paul, K., Eickhoff, S. B., & Raschle, N. M. (2022). Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Social cognitive and affective neuroscience, 17(4), 351–366. https://doi.org/10.1093/scan/nsab105
  19. Fernandes, D., & Carvalho, A. L. (2016). Mechanisms of homeostatic plasticity in the excitatory synapse. Journal of neurochemistry, 139(6), 973–996. https://doi.org/10.1111/jnc.13687
  20. Fuhrmann, D., Knoll, L. J., & Blakemore, S. J. (2015). Adolescence as a Sensitive Period of Brain Development. Trends in cognitive sciences, 19(10), 558–566. https://doi.org/10.1016/j.tics.2015.07.008
  21. Hofman M. A. (2014). Evolution of the human brain: when bigger is better. Frontiers in neuroanatomy, 8, 15. https://doi.org/10.3389/fnana.2014.00015
  22. Kirkland, J. M., Edgar, E. L., Patel, I., Feustel, P., Belin, S., & Kopec, A. M. (2024). Synaptic pruning during adolescence shapes adult social behavior in both males and females. Developmental psychobiology, 66(3), e22473. https://doi.org/10.1002/dev.22473
  23. Langille, J. J., & Brown, R. E. (2018). The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Frontiers in systems neuroscience, 12, 52. https://doi.org/10.3389/fnsys.2018.00052
  24. Levy, J., Goldstein, A., Zagoory-Sharon, O., Weisman, O., Schneiderman, I., Eidelman-Rothman, M., & Feldman, R. (2016). Oxytocin selectively modulates brain response to stimuli probing social synchrony. NeuroImage, 124(Pt A), 923–930. https://doi.org/10.1016/j.neuroimage.2015.09.066
  25. Marchitelli, R., Paillère-Martinot, M. L., Bourvis, N., Guerin-Langlois, C., Kipman, A., Trichard, C., Douniol, M., Stordeur, C., Galinowski, A., Filippi, I., Bertschy, G., Weibel, S., Granger, B., Limosin, F., Cohen, D., Martinot, J. L., & Artiges, E. (2022). Dynamic Functional Connectivity in Adolescence-Onset Major Depression: Relationships With Severity and Symptom Dimensions. Biological psychiatry. Cognitive neuroscience and neuroimaging, 7(4), 385–396. https://doi.org/10.1016/j.bpsc.2021.05.003
  26. Moreno-López, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & van Harmelen, A. L. (2020). The Resilient Emotional Brain: A Scoping Review of the Medial Prefrontal Cortex and Limbic Structure and Function in Resilient Adults With a History of Childhood Maltreatment. Biological psychiatry. Cognitive neuroscience and neuroimaging, 5(4), 392–402. https://doi.org/10.1016/j.bpsc.2019.12.008
  27. Morris R. G. (1999). D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain research bulletin, 50(5-6), 437. https://doi.org/10.1016/s0361-9230(99)00182-3
  28. Neniskyte, U., & Gross, C. T. (2017). Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders. Nature reviews. Neuroscience, 18(11), 658–670. https://doi.org/10.1038/nrn.2017.110
  29. Paus, T., Collins, D. L., Evans, A. C., Leonard, G., Pike, B., & Zijdenbos, A. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain research bulletin, 54(3), 255–266. https://doi.org/10.1016/s0361-9230(00)00434-2
  30. Piochon, C., Kano, M., & Hansel, C. (2016). LTD-like molecular pathways in developmental synaptic pruning. Nature neuroscience, 19(10), 1299–1310. https://doi.org/10.1038/nn.4389
  31. Rizzolatti, G., Fogassi, L., & Gallese, V. (1997). Parietal cortex: from sight to action. Current opinion in neurobiology, 7(4), 562–567. https://doi.org/10.1016/s0959-4388(97)80037-2
  32. Rizzolatti, G., & Fogassi, L. (2014). The mirror mechanism: recent findings and perspectives. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1644), 20130420. https://doi.org/10.1098/rstb.2013.0420
  33. Sakai J. (2020). Core Concept: How synaptic pruning shapes neural wiring during development and, possibly, in disease. Proceedings of the National Academy of Sciences of the United States of America, 117(28), 16096–16099. https://doi.org/10.1073/pnas.2010281117
  34. Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: remembering, imagining, and the brain. Neuron, 76(4), 677–694. https://doi.org/10.1016/j.neuron.2012.11.001
  35. Skrebitsky, V. G., & Chepkova, A. N. (1998). Hebbian synapses in cortical and hippocampal pathways. Reviews in the neurosciences, 9(4), 243–264. https://doi.org/10.1515/revneuro.1998.9.4.243
  36. Spear L. P. (2013). Adolescent neurodevelopment. The Journal of adolescent health : official publication of the Society for Adolescent Medicine, 52(2 Suppl 2), S7–S13. https://doi.org/10.1016/j.jadohealth.2012.05.006
  37. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology review, 20(4), 327–348. https://doi.org/10.1007/s11065-010-9148-4
  38. Sweatt J. D. (2016). Neural plasticity and behavior - sixty years of conceptual advances. Journal of neurochemistry, 139 Suppl 2, 179–199. https://doi.org/10.1111/jnc.13580
  39. Tymofiyeva, O., Henje, E., Yuan, J. P., Huang, C. Y., Connolly, C. G., Ho, T. C., Bhandari, S., Parks, K. C., Sipes, B. S., Yang, T. T., & Xu, D. (2021). Reduced anxiety and changes in amygdala network properties in adolescents with training for awareness, resilience, and action (TARA). NeuroImage. Clinical, 29, 102521. https://doi.org/10.1016/j.nicl.2020.102521
  40. van Drunen, L., Dobbelaar, S., Crone, E. A., & Wierenga, L. M. (2024). Genetic and environmental influences on structural brain development from childhood to adolescence: A longitudinal twin study on cortical thickness, surface area, and subcortical volume. Developmental cognitive neuroscience, 68, 101407. https://doi.org/10.1016/j.dcn.2024.101407
  41. van Dyck, L. I., & Morrow, E. M. (2017). Genetic control of postnatal human brain growth. Current opinion in neurology, 30(1), 114–124. https://doi.org/10.1097/WCO.0000000000000405
  42. van Elk, M., & Aleman, A. (2017). Brain mechanisms in religion and spirituality: An integrative predictive processing framework. Neuroscience and biobehavioral reviews, 73, 359–378. https://doi.org/10.1016/j.neubiorev.2016.12.031
  43. Veroude, K., Jolles, J., Croiset, G., & Krabbendam, L. (2013). Changes in neural mechanisms of cognitive control during the transition from late adolescence to young adulthood. Developmental cognitive neuroscience, 5, 63–70. https://doi.org/10.1016/j.dcn.2012.12.002
  44. Yeatman, J. D., Wandell, B. A., & Mezer, A. A. (2014). Lifespan maturation and degeneration of human brain white matter. Nature communications, 5, 4932. https://doi.org/10.1038/ncomms5932