Skip to main navigation menu Skip to main content Skip to site footer

Perspective

Vol. 4 No. 1 (2025): Les neurosciences de l'éducation au service du grand public

A quoi ça sert les maths ? Les neurosciences au service de la didactique : une formation donnée aux enseignants de mathématiques

  • Nathan Jeanmonod
DOI
https://doi.org/10.26034/cortica.2025.7035
Submitted
March 9, 2025
Published
2025-03-21

Abstract

This article explores the impact of neuroscience on mathematics didactics through the implementation of a training program for teachers. Recognizing that mathematics education is often perceived as abstract and disconnected from its cognitive utility, the author proposes a neuroscience-based approach to optimize pedagogical methods and enhance student motivation. The project aims to design a multi-session training on the links between neuroscience and mathematics, focusing on neuroplasticity, neuronal network modeling, and the development of executive functions. A needs analysis among teachers and feedback from the training help assess the impact of this approach on their teaching practices. The results suggest that neuroscience training promotes a better understanding of learning mechanisms and a more effective adaptation of teaching strategies. This study highlights the importance of integrating neuroscience into continuous teacher training to optimize mathematics instruction and encourage more meaningful student learning.

References

  1. Adihou, A., & Marchand, P. (2014). Les trucs en classe de mathématiques : Quand et pourquoi? 221, 35‑40. Revue-mathematiques.ch.
  2. Artho, J., Jenny, A., & Karlegger, A. (2012). Wissenschaftsbeitrag. Energieforschung Stadt Zürich, 6.
  3. Bader, S. A. (2024). Une approche collaborative du feedback correctif pour développer la compétence de production écrite des apprenants de FLE en télé-enseignement. Didactique du FLES. Recherches et pratiques, 3: 1.
  4. Barallobres, G. (2018). RÉFLEXIONS SUR LES LIENS ENTRE NEUROSCIENCES, MATHÉMATIQUES ET ÉDUCATION. McGill Journal of Education / Revue des sciences de l’éducation de McGill, 53(1), 169‑188. Érudit. https://doi.org/10.7202/1056288ar
  5. Baudouin, L., Adès, N., & Bouslama-Oueghlani, L. (2021). La myéline-Un nouvel acteur dans la plasticité cérébrale. médecine/sciences, 37(5), 535‑538.
  6. Bazhanov, V. A. (2021). Abstraction through the Lens of Neuroscience. Epistemology & Philosophy of Science, 58(2), 6‑18.
  7. Bekdemir, M. (2010). The pre-service teachers’ mathematics anxiety related to depth of negative experiences in mathematics classroom while they were students. Educational Studies in Mathematics, 75(3), 311‑328. https://doi.org/10.1007/s10649-010-9260-7
  8. Bigot, P., & Magnin, C. (2021). Merci aux enseignants flexibles pour leurs aménagements (atzéo éditions).
  9. Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600‑612.
  10. Bullock, S. M. (2011). Inside teacher education : Challenging prior views of teaching and learning.
  11. Censabella, S. (2007). On the role of inhibition processes in mathematical disabilities/Le rôle des processus d’inhibition dans les troubles d’apprentissage de l’arithmétique.
  12. Chabris, C., & Simons, D. (2011). The invisible gorilla : How our intuitions deceive us.
  13. Chambris, C. (2017). L’enseignement des maths à l’école et la méthode de Singapour. Bulletin de liaison de la Commission française pour l’enseignement des mathématiques.
  14. Chang, Z., Schwartz, M., Hinesley, V., & Dubinsky, J. (2021). Neuroscience concepts changed teachers’ vews of pedagogy and students. Frontiers in psychology, 12, 685856. frontiersin.org. https://doi.org/10.3389/fpsyg.2021.685856
  15. Dehaene, S. (2012). 15. Que nous apprennent les neurosciences sur les meilleures pratiques pédagogiques ? Regards croisés sur l’économie, 12(2), 231‑244. Cairn.info. https://doi.org/10.3917/rce.012.0231
  16. Dehaene, S. (2013). Les quatre piliers de l’apprentissage, ou ce que nous disent les neurosciences. Paris Tech Review.
  17. Deshaies, I. (2017). Effets d’une intervention didactique en mathématiques au préscolaire visant le développement du contrôle inhibiteur et adaptée au fonctionnement du cerveau sur l’apprentissage de préalables liés à l’arithmétique.
  18. Diamond, A. (2020). Chapter 19—Executive functions. In A. Gallagher, C. Bulteau, D. Cohen, & J. L. Michaud (Éds.), Handbook of Clinical Neurology (Vol. 173, p. 225‑240). Elsevier. https://doi.org/10.1016/B978-0-444-64150-2.00020-4
  19. Diamond, A., Kirkham, N., & Amso, D. (2002). Conditions under which young children can hold two rules in mind and inhibit a prepotent response. Developmental Psychology, 38(3), 352‑362. https://doi.org/10.1037/0012-1649.38.3.352
  20. Fahim, C. (2022). PRESENCE d’une Prédisposition : Premier épisode d’une série de huit épisodes sur le cerveau. Cortica, 1(2), 464-492. doi.org/10.26034/cortica.2022.3344
  21. Fahim, C. (2022). PRESENCE enracinée dans le cerveau par une prédisposition génétique et tissée par l’épigénétique. Cortica, 1(1), 1-3. doi.org/10.26034/cortica.2022.1779
  22. Fahim, C. (2023). PRESENCE DE RÉSEAUX DE NEURONES : OÙ EST LE PLAN POUR NE PAS SE PERDRE DANS L’IMMENSITÉ DE CETTE FORÊT ? Deuxième épisode d’une série de huit épisodes sur le cerveau. Cortica, 2(1), 1-9. doi.org/10.26034/cortica.2023.37936
  23. Fahim, C. (2024). L’Élagage synaptique. Cortica, 3(2),1-20. https://doi.org/10.26034/cortica.2024.6091
  24. Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and mathematical skills ? A review of evidence from brain and behavior. Psychonomic Bulletin & Review, 27, 465‑482. https://doi.org/10.3758/s13423-019-01694-7
  25. Hook, C. J., & Farah, M. J. (2013). Neuroscience for Educators : What Are They Seeking, and What Are They Finding? Neuroethics, 6(2), 331‑341. https://doi.org/10.1007/s12152-012-9159-3
  26. Howard-Jones, A., Jay, P., & Galeano, L. (2020). Professional Development on the Science of Learning and teachers’ Performative Thinking—A Pilot Study. Mind, Brain, and Education, 14(3), 267‑278. https://doi.org/10.1111/mbe.12254
  27. Ilyka, D., Johnson, M. H., & Lloyd-Fox, S. (2021). Infant social interactions and brain development : A systematic review. Neuroscience & Biobehavioral Reviews, 130, 448‑469. https://doi.org/10.1016/j.neubiorev.2021.09.001
  28. Ismail, F. Y., Fatemi, A., & Johnston, M. V. (2017). Cerebral plasticity : Windows of opportunity in the developing brain. European Journal of Paediatric Neurology, 21(1), 23‑48. https://doi.org/10.1016/j.ejpn.2016.07.007
  29. Kanayama, K., & Kasahara, K. (2018). The indirect effects of testing : Can poor performance in a vocabulary quiz lead to long-term L2 vocabulary retention. Vocabulary Learning and Instruction, 7(1), 1‑13.
  30. Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331(6018), 772‑775.
  31. Kolb, B., & Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. 20(4), 265.
  32. Leisman, G., Macahdo, C., Melillo, R., & Mualem, R. (2012). Intentionality and “free-will” from a neurodevelopmental perspective. Frontiers in Integrative Neuroscience, 6. https://doi.org/10.3389/fnint.2012.00036
  33. Marghetis, T., Núñez, R., & Bergen, B. K. (2014). Doing Arithmetic by Hand : Hand Movements during Exact Arithmetic Reveal Systematic, Dynamic Spatial Processing. Quarterly Journal of Experimental Psychology, 67(8), 1579‑1596. https://doi.org/10.1080/17470218.2014.897359
  34. Masi, M. (2023). An evidence-based critical review of the mind-brain identity theory. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1150605
  35. Masson, S. (2007). 24. Enseigner les sciences en s’ appuyant sur la neurodidactique des sciences. l’enseignement, 308.
  36. Masson, S. (2014). Cerveau, apprentissage et enseignement : Mieux connaître le cerveau peut-il nous aider à mieux enseigner. Éducation Canada, 54(4), 40‑43.
  37. Matsuzawa, J., Matsui, M., Konishi, T., Noguchi, K., Gur, R. C., Bilker, W., & Miyawaki, T. (2001). Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cerebral cortex, 11(4), 335‑342.
  38. McGowan, P. O., & Roth, T. L. (2015). Epigenetic pathways through which experiences become linked with biology. Development and Psychopathology, 27(2), 637‑648. Cambridge Core. https://doi.org/10.1017/S0954579415000206
  39. Ogunyinka, A., et al. (2024, 2 octobre). En quoi les drogues hallucinogènes ont-elles un impact sur la perception visuelle ? https://lmatpe.wordpress.com/2016/03/16/112/
  40. Pierre, V. (2009). L’aide stratégique aux élèves en difficulté scolaire.
  41. Rivkin, N. (2013). The Effects of Yoga on Aphasia Rehabilitation.
  42. Roditi, É., & Noûs, C. (2021). Didactique des mathématiques et neurosciences cognitives : Une analyse des contributions à la recherche sur l’apprentissage d’un contenu scolaire. Revue française de pédagogie, 211(2), 103‑115. Cairn.info. https://doi.org/10.4000/rfp.10549
  43. Saignavongs, M., & Baret, B. (2020). Neurocontes : Histoires (de cerveaux) extraordinaires. Odile Jacob.
  44. Selemon, L. D. (2013). A role for synaptic plasticity in the adolescent development of executive function. Translational Psychiatry, 3(3), e238‑e238. https://doi.org/10.1038/tp.2013.7
  45. Shonkoff, J., Richmond, J., Levitt, P., Bunge, S., Cameron, J., Duncan, G., & Nelson III, C. (2016). From best practices to breakthrough impacts a science-based approach to building a more promising future for young children and families. Cambirdge, MA: Harvard University, Center on the Developing Child, 747‑756.
  46. Siméone, N. R. B. (2024). Le cerveau, moteur de l’apprentissage : Les découvertes neuroscientifiques pour améliorer l’éducation. Journal of Neuroscience, Psychology, and Economics.
  47. Singer, W., Tretter, F., & Yinon, U. (1982). Evidence for long-term functional plasticity in the visual cortex of adult cats. The Journal of Physiology, 324(1), 239‑248. https://doi.org/10.1113/jphysiol.1982.sp014109
  48. Suárez-Pellicioni, M., Núnez-Pena, M. I., & Colomé, À. (2016). Math anxiety : A review of its cognitive consequences, pyschophysiological correlates, and brain bases. Cognitive, Affective, & Behavioral Neuroscience, 16, 3‑22. https://doi.org/10.3758/s13415-015-0370-7
  49. Tan, Y. S. M., & Amiel, J. J. (2022). Teachers learning to apply neuroscience to classroom instruction : Case of professional development in British Columbia. Professional Development in Education, 48(1), 70‑87. https://doi.org/10.1080/19415257.2019.1689522
  50. Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences, 106(24), 9866‑9871. https://doi.org/10.1073/pnas.0900390106
  51. Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills : A meta-analysis of training studies. Psychological bulletin, 139(2), 352.
  52. van den Heuvel, M. P., & Sporns, O. (2011). Rich-Club Organization of the Human Connectome. Journal of Neuroscience, 31(44), 15775‑15786. https://doi.org/10.1523/JNEUROSCI.3539-11.2011
  53. Villemure, C., Ceko, M., Cotton, V., & Bushnell, M. C. (2015). Neuroprotective effects of yoga practice : Age-, experience-, and frequency-dependent plasticity. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00281