Aller directement au menu principal Aller directement au contenu principal Aller au pied de page

Perspective

Vol. 1 No. 1 (2022): Recherches et perspectives en neurosciences de l'éducation

Mieux comprendre les mécanismes cérébraux d’apprentissage pour faciliter la mise en application des connaissances issues de la recherche et favoriser la réussite scolaire des élèves

DOI
https://doi.org/10.26034/cortica.2022.1956
Soumise
March 29, 2022
Publié-e
2022-04-02

Résumé

Résumé

Souvent désignée « décennie du cerveau », la décennie des années 90 a été marquée par l’accroissement des connaissances neuroscientifiques et l’avènement de nouvelles technologies d’imagerie cérébrale. Ces progrès en neurosciences ont progressivement mené la communauté de recherche à se questionner sur les retombées possibles des connaissances neuroscientifiques pour le domaine de l’éducation. Une nouvelle approche de recherche interdisciplinaire a ainsi émergé : la neuroéducation. Cette approche s’intéresse à des problématiques propres au milieu de l’éducation à l’aide d’un niveau d’analyse qui est celui du fonctionnement cérébral. La neuroéducation cherche donc à établir un pont entre le fonctionnement cérébral, les mécanismes liés à l’apprentissage et l’enseignement. De l’avis de plusieurs chercheurs et organisations internationales, une meilleure compréhension du cerveau pourrait en effet fournir des pistes intéressantes afin de mieux comprendre ce qui caractérise différents apprentissages sur le plan cérébral et, ultimement, guider le choix d’approches pédagogiques mieux adaptées à l’organisation et au fonctionnement du cerveau des élèves. D’une part, la neuroéducation permet en ce sens une compréhension plus fondamentale de différents apprentissages scolaires en s’intéressant aux changements qui s’opèrent durant l’apprentissage grâce à la neuroplasticité. D’autre part, plusieurs recherches ont mis en évidence que la neuroplasticité ne serait pas infinie et présenterait certaines limites. Elle serait en effet influencée par différentes contraintes, en particulier par la structure et l’organisation initiale du cerveau, c’est‑à‑dire l’architecture cérébrale préalable à l’apprentissage. Dans la lignée des recherches menées en psychologie cognitive, les résultats des recherches en neuroéducation fournissent déjà des points de repère intéressants pour guider le choix de certaines stratégies pédagogiques. Néanmoins, la mise en application des résultats de recherche à la salle de classe représente un défi considérable. À cet égard, le présent article vise à discuter de l’idée qu’une meilleure compréhension des mécanismes cérébraux d’apprentissage pourrait faciliter la mise en application des connaissances issues de la recherche et ainsi favoriser la réussite scolaire des élèves. 

 

Mots-clés : neuroéducation; contraintes cérébrales; neuroplasticité; enseignement

 

Abstract

Often referred to as the "decade of the brain," the decade of the 1990s was marked by the growth of neuroscience knowledge and the advent of new brain imaging technologies. These advances in neuroscience gradually led the research community to question the potential impact of neuroscientific knowledge on the field of education. A new interdisciplinary research approach has thus emerged: neuroeducation. This approach focuses on problems specific to the field of education using a level of analysis that is that of brain function. Neuroeducation therefore seeks to establish a bridge between brain functioning, the mechanisms related to learning and teaching. In the opinion of several researchers and international organizations, a better understanding of the brain could indeed provide interesting avenues to better understand what characterizes different learning processes at the brain level and, ultimately, guide the choice of pedagogical approaches that are better adapted to the organization and functioning of the students' brain. On the one hand, neuroeducation allows for a more fundamental understanding of various school learning processes by focusing on the changes that occur during learning through brain plasticity. On the other hand, several studies have shown that neuroplasticity is not infinite and has certain limits. It would indeed be influenced by different constraints, in particular by the initial structure and organization of the brain, i.e. the cerebral architecture prior to learning. In line with research in cognitive psychology, neuroeducational research findings already provide valuable insights to orient the choice of teaching strategies. Nevertheless, the application of research findings to the classroom presents a considerable challenge. In this respect, the present article aims to discuss the idea that a better understanding of the brain mechanisms of learning could facilitate the application of research findings and thus promote the academic success of students. 

Keywords: neuroeducation; brain constraints; neuroplasticity; teaching

Références

  1. Allaire-Duquette, G., Brault Foisy, L. M., Potvin, P., Riopel, M., Larose, M., & Masson, S. (2021). An fMRI study of scientists with a Ph. D. in physics confronted with naive ideas in science. NPJ science of learning, 6(1), 1-12. https://doi.org/10.1038/s41539-021-00091-x
  2. Ansari, D., De Smedt, B. et Grabner, R. H. (2012). Neuroeducation – A critical overview of an emerging field. Neuroethics, 5(2), 105-117. https://doi.org/10.1007/s12152-011-9119-3
  3. Antony, J. W., Gobel, E. W., O'hare, J. K., Reber, P. J. et Paller, K. A. (2012). Cued memory reactivation during sleep influences skill learning. Nature neuroscience, 15(8), 1114. https://doi.org/10.1038/nn.3152
  4. Battro, A. M. et Cardinali, D. P. (1996). Más cerebro en la educación [More brain in education] [Electronic version]. La Nación. Récupéré de http://catamarcaemprende.com/wp-content/uploads/2008/03/cereln.pdf
  5. Battro, A. M., Fischer, K. W. et Léna, P. J. (dir.). (2010). The educated brain: Essays in neuroeducation. Cambridge University Press. https://doi.org/10.1017/CBO9780511489907
  6. Berlucchi, G. et Buchtel, H. A. (2009). Neuronal plasticity: historical roots and evolution of meaning. Experimental Brain Research, 192(3), 307-319. https://doi.org/10.1007/s00221-008-1611-6
  7. Brault Foisy, L.-M., Masson, S., Potvin, P. et Riopel, M. (2015). Is inhibition involved in overcoming a common physics misconception in mechanics?, Trends in Neuroscience and Education, 4, 26-36. http://dx.doi.org/10.1016/j.tine.2015.03.001
  8. Callan, D. E. et Schweighofer, N. (2010). Neural correlates of the spacing effect in explicit verbal semantic encoding support the deficient‐processing theory. Human Brain Mapping, 31(4), 645-659. https://doi.org/10.1002/hbm.20894
  9. Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13-19. https://doi.org/10.1016/S0193-3973(99)00046-5
  10. Chen, O., Paas, F., & Sweller, J. (2021). Spacing and interleaving effects require distinct theoretical bases: a systematic review testing the cognitive load and discriminative-contrast hypotheses. Educational Psychology Review, 33(4), 1499-1522. https://doi.org/10.1007/s10648-021-09613-w
  11. Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The “neuronal recycling” hypothesis. Dans S. Dehaene, J. R. Duhamel, M. Hauser et G. Rizzolatti (dir.), From monkey brain to human brain (p. 133-157). Cambridge, Massachusetts : MIT Press.
  12. Dehaene, S. (2008). Cerebral constraints in reading and arithmetic: Education as a ‘‘neuronal recycling’’process. Dans A. M. Battro, K. W. Fischer et P. J. Léna (dir.), The educated brain: Essays in neuroeducation (p. 232-247). Cambridge : Cambridge University Press. https://doi.org/10.1017/CBO9780511489907.016
  13. Dehaene, S. et Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56(2), 384-398. https://doi.org/10.1016/j.neuron.2007.10.004
  14. Dehaene, S., Pegado, F., Braga, L. W., Ventura, P., Filho, G. N., Jobert, A., ... Cohen, L. (2010). How Learning to Read Changes the Cortical Networks for Vision and Language. Science, 330(6009), 1359-1364. https://doi.org/10.1126/science.1194140
  15. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C. M., ... Felber, S. (2005). Learning by strategies and learning by drill — evidence from an fMRI study. Neuroimage, 25(3), 838-849. https://doi.org/10.1016/j.neuroimage.2004.12.009
  16. Fischer, K. W. (2009). Mind, brain, and education: building a scientific groundwork for learning and teaching1. Mind, Brain, and Education, 3(1), 3-16. https://doi.org/10.1111/j.1751-228X.2008.01048.x
  17. Fischer, K. W., Daniel, D. B., Immordino-Yang, M. H., Stern, E., Battro, A. et Koizumi, H. (2007). Why mind, brain, and education? Why now? Mind, Brain, and Education, 1(1), 1-2. https://doi.org/10.1111/j.1751-228X.2007.00006.x
  18. Fischer, K. W., Goswami, U., Geake, J. et The Task Force on the Future of Educational Neuroscience (2010). The future of educational neuroscience. Mind, Brain, and Education, 4 (2), 68-80. https://doi.org/10.1111/j.1751-228X.2010.01086.x
  19. Forman, S. G. (2015). Implementation of mental health programs in schools: A change agent's guide. Washington, DC: American Psychological Association Books. https://doi.org/10.1037/14597-007
  20. Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. et Wenderoth, M. P. (2014, Jun 10). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences of the United States of America, 111(23), 8410-8415.: https://doi.org/10.1073/pnas.1319030111
  21. Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Friston, K. J. (2009). Repetition suppression and plasticity in the human brain. Neuroimage, 48(1), 269-279. https://doi.org/10.1016/j.neuroimage.2009.06.034
  22. Geake, J. (2009). The Brain At School: Educational Neuroscience In The Classroom. McGraw-Hill Education (UK).
  23. Geake, J. et Cooper, P. (2003). Cognitive Neuroscience: implications for education? Westminster Studies in Education, 26(1), 7-20. https://doi.org/10.1080/0140672030260102
  24. Goswami, U. (2006). Neuroscience and education: from research to practice? Nature reviews neuroscience, 7(5), 406. https://doi.org/10.1038/nrn1907
  25. Goswami, U. (2008). Principles of learning, implications for teaching: A cognitive neuroscience perspective. Journal of Philosophy of Education, 42(3-4), 381- 399. https://doi.org/10.1111/j.1467-9752.2008.00639.x
  26. Hattie, J. (2013). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. Abingdon : Routledge. ISBN 0-203-88733-6 Master e-book ISBN
  27. Hattie, J. (2015). The applicability of Visible Learning to higher education. Scholarship of Teaching and Learning in Psychology, 1(1), 79. https://doi.org/10.1037/stl0000021
  28. Hattie, J. et Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81-112. https://doi.org/10.3102/003465430298487
  29. Hebb, D.O. (1949). The organization of behaviour: A neuropsychological theory. New-York : Wiley.
  30. Houdé, O. (2014). Apprendre à résister. Paris : Le Pommier.
  31. Houdé, O., Kayser, D., Koenig, O., Proust, J. et Rastier, F. (dir.). (2004). Dictionary of cognitive science: neuroscience, psychology, artificial intelligence, linguistics, and philosophy. New-York : Routledge.
  32. Houdé, O., Zago, L., Crivello, F., Moutier, S., Pineau, A., Mazoyer, B. et Tzourio- Mazoyer, N. (2001). Access to deductive logic depends on a right ventromedial prefrontal area devoted to emotion and feeling: Evidence from a training paradigm. NeuroImage, 14, 1486-1492. https://doi.org/10.1006/nimg.2001.0930
  33. Kim, A. S. N., Wong-Kee-You, A. M. B., Wiseheart, M., & Rosenbaum, R. S. (2019). The spacing effect stands up to big data. Behavior Research Methods, 51(4), 1485-1497. https://doi.org/10.3758/s13428-018-1184-7
  34. Kornell, N. (2009). Optimising learning using flashcards: Spacing is more effective than cramming. Applied Cognitive Psychology, 23(9), 1297-1317. https://doi.org/10.1002/acp.1537
  35. Kornmeier, J., Sosic-Vasic, Z., & Joos, E. (2022). Spacing Learning Units affects both learning and forgetting. Trends in Neuroscience and Education, 100173. https://doi.org/10.1016/j.tine.2022.100173
  36. Kwok, V., Niu, Z., Kay, P., Zhou, K., Mo, L., Jin, Z., ... Tan, L. H. (2011). Learning new color names produces rapid increase in gray matter in the intact adult human cortex. Proceedings of the National Academy of Sciences, 108(16), 6686-6688. https://doi.org/10.1073/pnas.1103217108
  37. Liu, X. (2001). Synthesizing research on student conceptions in science. International Journal of Science Education, 23, 55-81. https://doi.org/10.1080/09500690119778
  38. Masson, S. (2012). Neuroeducation: Understanding the brain to improve teaching. Neuroeducation, 1(1), 1-2.
  39. Masson, S. (2015). Les apports de la neuroeducation a I'enseignement: des neuromythes aux decouvertes actuelles. Approche neuropsychologique des apprentissages chez I'enfant, 134, 11-22.
  40. Masson, S. (2014). Cerveau, apprentissage et enseignement: mieux connaître le cerveau peut-il nous aider à mieux enseigner. Éducation Canada, 54(4), 40-43.
  41. Masson, S. (2020). Activer ses neurones: pour mieux apprendre et enseigner. Odile Jacob.
  42. Masson, S. et Brault Foisy, L. M. (2014). Fundamental concepts bridging education and the brain. McGill Journal of Education, 49(2), 501-512. https://doi.org/10.7202/1029432ar .
  43. Masson, S., Potvin, P., Riopel, M. et Brault Foisy, L.-M. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8(1), 37- 48. https://doi.org/10.1111/mbe.12043
  44. McCandliss, B. D. (2010). Educational neuroscience: The early years. Proceedings of the National Academy of Sciences, 107(18), 8049-8050. https://doi.org/10.1073/pnas.1003431107
  45. Mesibov, G. B., & Shea, V. (2011). Evidence-based practices and autism. Autism, 15(1), 114-133. https://doi.org/10.1177/1362361309348070
  46. Monchi, O., Petrides, M., Petre, V., Worsley, K., et Dagher, A. (2001). Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. Journal of Neuroscience, 21(19), 7733-7741. https://doi.org/10.1523/JNEUROSCI.21-19-07733.2001
  47. Newton, P. M. (2015). The learning styles myth is thriving in higher education. Frontiers in Psychology, 6, 1908. https://doi.org/10.3389/fpsyg.2015.01908
  48. OCDE (2007). Comprendre le cerveau : naissance d'une nouvelle science de l'apprentissage. Paris: Éditions de l'OCDE.
  49. Peters, S., Braams, B. R., Raijmakers, M. E., Koolschijn, P. C. M., & Crone, E. A. (2014). The neural coding of feedback learning across child and adolescent development. Journal of Cognitive Neuroscience, 26(8), 1705-1720. https://doi.org/10.1162/jocn_a_00594
  50. Potvin, P., Masson, S., Lafortune, S. et Cyr, G. (2014). Persistence of the intuitive conception that heavier objects sink more: A reaction time study with different levels of interference. International Journal of Science and Mathematics Education. https://doi.org/10.1007/s10763-014- 9520-6
  51. Reddy, L. A., Forman, S. G., Stoiber, K. C. et Gonzalez, J. E. (2017). A national investigation of school psychology trainers’attitudes and beliefs about evidence-based practices. Psychology in the Schools, 54(3), 261-278. https://doi.org/10.1002/pits.21999
  52. Pascual-Leone, A., Amedi, A., Fregni, F. et Merabet, L. B. (2005). The plastic human brain cortex. Annual Review Neuroscience, 28, 377-401. https://doi.org/10.1146/annurev.neuro.27.070203.144216
  53. Pasquinelli, E. (2011). Knowledge‐and evidence‐based education: Reasons, trends, and contents. Mind, Brain, and Education, 5(4), 186-195. https://doi.org/10.1111/j.1751-228X.2011.01128.x
  54. Pasquinelli, E. (2015). Améliorer le dialogue entre les sciences cognitives et l’éducation en s’inspirant des relations entre la recherche fondamentale et la médecine clinique. Approche neuropsychologique des apprentissages chez l’enfant, 134, 23-30
  55. Potvin, P. (2013). Proposition for improving the classical models of conceptual change based on neuroeducational evidence: conceptual prevalence. Neuroéducation, 2(1), 16-43. https://doi.org/10.24046/neuroed.20130201.16
  56. Royal Society (2011). Neuroscience: Implications for education and lifelong learning. London : The Royal Society.
  57. Simpson, R. (2005). Evidence-based practice in developmental disabilities: What is it and why does it matter? Journal on Developmental Disabilities, 12, 167–171.
  58. Slavin, R. E. (2002). Evidence-based education policies: Transforming educational practice and research. Educational researcher, 31(7), 15-21. https://doi.org/10.3102/0013189X031007015
  59. Smolen, P., Zhang, Y. et Byrne, J. H. (2016). The right time to learn: mechanisms and optimization of spaced learning. Nature Reviews Neuroscience, 17(2), 77. https://doi.org/10.1038/nrn.2015.18
  60. Spitzer, M. (2012). Education and neuroscience. Trends in Neuroscience and Education, 1(1), 1-2. https://doi.org/10.1016/j.tine.2012.09.002
  61. Stephenson, J. (2009). Best practice? Advice provided to teachers about the use of Brain Gym in australian schools. Australian Journal of Education, 53(2), 109- 124. https://research.acer.edu.au/aje/vol53/iss2/1
  62. Van der Kleij, F. M., Feskens, R. C. W. et Eggen, T. J. H. M. (2015). Effects of Feedback in a Computer-Based Learning Environment on Students’ Learning Outcomes. Review of Educational Research, 85(4), 475-511. https://doi.org/10.3102/0034654314564881
  63. Van Duijvenvoorde, A. C., Zanolie, K., Rombouts, S. A., Raijmakers, M. E. et Crone, E. A. (2008). Evaluating the negative or valuing the positive? Neural mechanisms supporting feedback-based learning across development. Journal of Neuroscience, 28(38), 9495-9503. https://doi.org/10.1523/JNEUROSCI.1485-08.2008
  64. Yoncheva, Y. N., Blau, V. C., Maurer, U. et McCandliss, B. D. (2010). Attentional focus during learning impacts N170 ERP responses to an artificial script. Developmental Neuropsychology, 35(4), 423-445. https://doi.org/10.1080/87565641.2010.480918
  65. Ward, J. (2010). The student's guide to cognitive neuroscience: Second edition. New York : Psychology Press.
  66. Wilkinson, L., Tai, Y. F., Lin, C. S., Lagnado, D. A., Brooks, D. J., Piccini, P. et Jahanshahi, M. (2014, Oct). Probabilistic classification learning with corrective feedback is associated with in vivo striatal dopamine release in the ventral striatum, while learning without feedback is not. Hum Brain Mapp, 35(10), 5106-5115. https://doi.org/10.1002/hbm.22536
  67. Willingham, D. (2013, 26 mars). A New Push for Science in Education in Britain. [Billet de blogue]. Récupéré de http://www.danielwillingham.com/daniel-willingham-science-and-education-blog/category/teaching
  68. Wilson, R. C., Shenhav, A., Straccia, M. et Cohen, J. D. (2019). The eighty five percent rule for optimal learning. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12552-4